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Strategic Charter 

To be the premier provider  
of motion and control systems 

for our global customers 

 
Mission 
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speed and responsiveness 
premier customer service 

financial strength 
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company, team members 
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Product-development process 
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What’s wrong with this? 

• Knowledge is fragmented 

• Subject matter experts (SME)  
often scarce and busy  

• When people retire, information is lost 

• Less uniformity and consistency 

• Time-intensive, manpower dependent  

• Often design is done via trial and error— 
case-based reasoning 
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Better, new approach? 



Let’s consider an example 
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Serial, tightly-coupled KBE system 
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Drawbacks of procedural process 

• Part and product specific 

• Hard-coded interfaces 

• Cumbersome to maintain 

• Incompatible API’s 

• External parameter linking issues 

• Very sensitive to interface changes 
(parameters, rules, features) 

• Expansions are complex and error prone 

• Inflexible 
Modular 

Procedural 



A system’s approach 
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Open, concurrent KBE system 
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Merits of modular process 

• Product-Independent 
• Architecture 

• Part-Independent 
• Concept 

• Tool-Independent 
• Method 
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A CATIA v5 implementation 

• System Architecture  
• JustOne system model and common tree 

structure  

• Generative Rule Bodies 
• Rule bodies create more rules dynamically on 

the tree; asleep until awaken 
• Retrieve templates; no generative geometry 

• Internal Linking 
• Two generalized automation methods to 

pass/exchange information intrapart and 
interpart 

 



Demo–Applying the concept 
  Product 

Configurator 

 Build a Component 

 Templates  

Apply Intra-Part 

Relations 

Apply System 

Specs 

Build Assembly 

Constraints 

Choose a Sub-System 

Configuration 

Configure An 

Product 

 Build System     

 Solution 
Choose a System 

Configuration 

Choose a Component 

Configuration 

Build Intra-Part 

Rules & Relations 

 Apply Inter- 

Component  

 Relations 

Apply Assembly 

Constraints 

Build System 

Specs 

 Build Sub-system     

 Solution 

 Build Component     

 Solution 

 Build Inter- 

 Component 

 Relations  

 Instantiate Component 

 Templates  

 SmartPart 
Configurator 



Demo–What’s in play? 

• Two summary Excel spreadsheets  
(materials and functional requirements) 

• Seed file (PKT, GenScript) 

• A new CATProduct 

 



Demo–Initialize the tree 
  Product 

Configurator 

 Build a Component 

 Templates  

Apply Intra-Part 

Relations 

Apply System 

Specs 

Build Assembly 

Constraints 

Choose a Sub-System 

Configuration 

Configure An 

Product 

 Build System     

 Solution 
Choose a System 

Configuration 

Choose a Component 

Configuration 

Build Intra-Part 

Rules & Relations 

 Apply Inter- 

Component  

 Relations 

Apply Assembly 

Constraints 

Build System 

Specs 

 Build Sub-system     

 Solution 

 Build Component     

 Solution 

 Build Inter- 

 Component 

 Relations  

 Instantiate Component 

 Templates  

 SmartPart 
Configurator 

Decomposition 





Demo–Salient points 

• Initialized the system/customer specs 
• Automation 

• Used KBE scripting language to construct a 
reconfigure-able and smart model of the 
product 
• Automation 

• Defined a collection of ready-to-fire rule 
bodies for reconfiguring part 
• Reusability 

• Built “generatively” a product tree 
• Extensibility 
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Demo–What’s in play? 

• Three templates for each part 

• Other design tables in background 

• A new CATProduct for each part 

 

 



Instantiation 

Demo–SmartParts Creation 
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Demo–Salient points 

• Defined new rules for creating SmartParts 
• Reusability 

• Rules fired to build new product tree 
• Extensibility 

• Each product tree has three components of 
SmartPart 
• Systematization 

• Interpart relations were established to bind 
components of the SmartPart 
• External links eliminated, maintainability 



Demo–Configuring For Specs 
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Demo–Salient points 

• Specs parameters & constraints passed from 
“systems” to “subsystems”, to “components,” 
to “parts” during “decomposition” and vice 
versa during “aggregation” 

• Smart Parts were “instantiated” and 
constraints satisfied 

• Solution is reconfigurable for changing spec 
requirements 



Engineered design… 

…directly from spec 

• Good for early program stages  
(Quick evaluation of various “alternate 
designs” scenarios) 

• Gets you 80% there and you can finish 
the rest (20%) in native CATIA mode 

 



Engineered design… 

…directly from spec 



Gaining the most from KBE 

• Take a holistic view of your product 
development needs 

• KBE has its own life. Think about integration 
and interfaces. They are big deal for KBE.  

• Employ a modular, open, and concurrent 
strategy for building KBE systems 

• Think engineering centric versus geometry-
centric; analysis driven, geometry is a by-
product 

• Follow a knowledge management framework 
for applying KBE 



Gaining the most from KBE 
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Gaining the most from KBE 

• Leverage Knowledge (K) 
• Capture and maintain intellectual  

capital 
• Use spreadsheets for inputting  

specs, material data and rules since  
interfaces are system-maintained 

• Try not to fragment your knowledge and  
rules into multiple systems / multiple interfaces 

• Great value in storing your rules & equations in 
your strategic PLM system 
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Gaining the most from KBE 

• Engage Enterprise (E) 
• Establish a knowledge sharing  

culture 
• Educate about KM, KBE, and its  

benefits 
• Create a cross-functional KBE team 
• Make it easy for SME’s to contribute and 

maintain knowledge 
• Appoint Knowledge Keepers 
• Use proactive promotion for KBE thinking 
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• Develop Automated Process (P) 

• Identify value-streams  
(e.g., streamline repetitive tasks) 

• Automate to design processes 
(e.g., Product Configurator, SmartPart 
Configurator, and others) 

• Develop strategies to minimize interfaces 
 

Gaining the most from KBE 

K E P T 



Gaining the most from KBE 

• Apply Advanced Tools (T) 

• Use system engineering techniques  

• Build inside CATIA V5 using  
Knowledge Advisor (KWA),  
Knowledge Expert (KWE), and  
Product Knowledge Template (PKT) 

• Minimize writing version dependent code 
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Watch for us on the History Channel’s  
Modern Marvels, May 12, 2004 


