
G-R: Getting the Most Gains
Out of Knowledge-Based Engineering

Jeff Rogers and Brian Prasad
Parker Hannifin Corporation
Aerospace Group
Control Systems Division

Parker Hannifin Corporation

Aerospace Automation
Climate &
Industrial

Control

Filtration
Fluid

Connectors
Hydraulics

Instru-
mentation Seal

Abex NWL
Control
Systems

Control
Systems

Commercial

Parker
Aerospace

Japan

Servo
Control

Customer
Support
Military

Customer
Support

Commercial

Gas Turbine
Fuel

Nichols

United
Aircraft

Products

Airborne

Air &
Fuel

Aircraft
Wheel &

Brake

Strategic Charter

To be the premier provider
of motion and control systems

for our global customers

Mission

Our mission is to provide
unequaled value through

superior performance
technical innovation

speed and responsiveness
premier customer service

financial strength

to our customers,
company, team members

and community

Values
Integrity

Teamwork
Leadership

Performance
Continuous Learning

Innovation

Vision

Continuous Improvement

Vision

…our lean vision

Product
Development

Process

$

Functional
Requirements

Engineered
Product

Product-development process

Value added
activity

Type I waste
Partial value-added

Type II waste
Non value-added

TRADITIONAL

Original,
Innovative effort

Repetitive
tasks

Re-do’s
Reinventing solutions
Repeating mistakes

LEAN & KBE Target reduction in
development effort

Innovate Automate

Value added
activity

Reuse

Reduction in
development

effort

Eliminate Creative Efforts Derived

Minimize Apply
Best practices

Apply
Analysis

LEAN Repetitive tasks Value added
activity

Minimize

As-is process

Expert
Engineers

Expert
Analysts

Expert
Designers

Product
Engineers

Product
Analysts

Product
Designers

Project
Managers

Function
Managers

What’s wrong with this?

• Knowledge is fragmented

• Subject matter experts (SME)
often scarce and busy

• When people retire, information is lost

• Less uniformity and consistency

• Time-intensive, manpower dependent

• Often design is done via trial and error—
case-based reasoning

Modular

Procedural

Tightly-coupled

open

Level of integration

c
o

n
c
u

rr
e

n
t

s
e

ri
a

l

Process path

Better, new approach?

Let’s consider an example

BalanceTube

LVDT

SecondaryPiston (SPiston)

CenterGland (CG)

EndGland (EG)

RodEnd (RE)

PrimaryPiston (PPiston)

RampWasher

CEBearing

CGRetainer

EGRetainer

EGNut

REBearing

Cylinder

Serial, tightly-coupled KBE system

Tandem
SPiston

Tandem
CenterGland

Tandem
PPiston

Tandem
Cylinder

Tandem
EndGland

Tandem
EGRetainer

Tandem
CGRetainer

Tandem
RodEnd

Tandem
EGNut

Tandem
REBearing

Tandem
CGBearing

Tandem
RampWasher

Tandem
BalanceTube

Tandem
LVDT

…
Table

Design
Table

Specs
Table

Material
Table

Analysis
Tools

Modular

Procedural

Drawbacks of procedural process

• Part and product specific

• Hard-coded interfaces

• Cumbersome to maintain

• Incompatible API’s

• External parameter linking issues

• Very sensitive to interface changes
(parameters, rules, features)

• Expansions are complex and error prone

• Inflexible
Modular

Procedural

A system’s approach
PERFORMANCE

SPECIFIED

product
concept
(initial)

materials / attributes /
features / parameters

develop
system
concept

decompose
systems into
subsystems

decompose
subsystems into

components

decompose
components into

parts

design each
part

design pairs
of parts

design pair
of parts into
components

design pair of
components into

subsystems

design pair of
subsystems into

system

design
system
concept

product
concept

(working)

PERFORMANCE
VERIFIED

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

Modular

Procedural

Open, concurrent KBE system
 Product

Configurator

 Build chosen

 Component

 Templates

Apply Intra-Part

Relations

Apply System

Specs

Build Assembly

Constraints

Choose a Sub-System

Configuration

Configure An

Product

 Build System

 Solution
Choose a System

Configuration

Choose a Component

Configuration

Build Intra-Part

Rules & Relations

 Apply Inter-

Component

 Relations

Apply Assembly

Constraints

Build System

Specs

 Build Sub-system

 Solution

 Build Component

 Solution

 Build Inter-

 Component

 Relations

 Instantiate Chosen

 Component

 Templates

 SmartPart
Configurator

Modular

Procedural

Merits of modular process

• Product-Independent
• Architecture

• Part-Independent
• Concept

• Tool-Independent
• Method

Modular

Procedural

A CATIA v5 implementation

• System Architecture
• JustOne system model and common tree

structure

• Generative Rule Bodies
• Rule bodies create more rules dynamically on

the tree; asleep until awaken
• Retrieve templates; no generative geometry

• Internal Linking
• Two generalized automation methods to

pass/exchange information intrapart and
interpart

Demo–Applying the concept
 Product

Configurator

 Build a Component

 Templates

Apply Intra-Part

Relations

Apply System

Specs

Build Assembly

Constraints

Choose a Sub-System

Configuration

Configure An

Product

 Build System

 Solution
Choose a System

Configuration

Choose a Component

Configuration

Build Intra-Part

Rules & Relations

 Apply Inter-

Component

 Relations

Apply Assembly

Constraints

Build System

Specs

 Build Sub-system

 Solution

 Build Component

 Solution

 Build Inter-

 Component

 Relations

 Instantiate Component

 Templates

 SmartPart
Configurator

Demo–What’s in play?

• Two summary Excel spreadsheets
(materials and functional requirements)

• Seed file (PKT, GenScript)

• A new CATProduct

Demo–Initialize the tree
 Product

Configurator

 Build a Component

 Templates

Apply Intra-Part

Relations

Apply System

Specs

Build Assembly

Constraints

Choose a Sub-System

Configuration

Configure An

Product

 Build System

 Solution
Choose a System

Configuration

Choose a Component

Configuration

Build Intra-Part

Rules & Relations

 Apply Inter-

Component

 Relations

Apply Assembly

Constraints

Build System

Specs

 Build Sub-system

 Solution

 Build Component

 Solution

 Build Inter-

 Component

 Relations

 Instantiate Component

 Templates

 SmartPart
Configurator

Decomposition

Demo–Salient points

• Initialized the system/customer specs
• Automation

• Used KBE scripting language to construct a
reconfigure-able and smart model of the
product
• Automation

• Defined a collection of ready-to-fire rule
bodies for reconfiguring part
• Reusability

• Built “generatively” a product tree
• Extensibility

Parameters

TypePart

CATParts

TypePartSpecs

TypePartSizing

TypePartGeometry

CATProduct

Open
Locked

Restricted

Type: Tandem

SmartPart concept
Parameters

TandemPiston

CATProduct

Open
Locked

Restricted

CATParts

TandemPistonSpecs

TandemPistonSizing

TandemPistonGeometry

Parameters

TandemGland

CATProduct

Open
Locked

Restricted

CATParts

TandemGlandSpecs

TandemGlandSizing

TandemGlandGeometry

SmartPiston

SmartCylinder

S
m

artC
enterG

land

S
m

a
rt

R
o
d
E

n
d

What type

 of Part?

Parameters

TypeRodEnd

CATParts

TypeRodEndSpecs

TypeRodEndSizing

TypeRodEndGeometry

CATProduct

Open
Locked

Restricted

Parameters

TypePPiston

CATParts

TypePPistonSpecs

TypePPistonSizing

TypePPistonGeometry

CATProduct

Open
Locked

Restricted

Parameters

TypeCylinder

CATParts

TypeCylinderSpecs

TypeCylinderSizing

TypeCylinderGeometry

CATProduct

Open
Locked

Restricted

Parameters

TypeCGland

CATParts

TypeCGlandSpecs

TypeCGlandSizing

TypeCGlandGeometry

CATProduct

Open
Locked

Restricted

Smart Actuator

Configurator

CATProduct
Parameters

Open
Locked

Restricted
TypeActuator

CATParts

TypeActuatorSpecs

TypeSmartPPiston

TypeSmartCylinder

TypeSmartCGland

TypeSmart XXX

Demo–What’s in play?

• Three templates for each part

• Other design tables in background

• A new CATProduct for each part

Instantiation

Demo–SmartParts Creation
 Product

Configurator

 Build a Component

 Templates

Apply Intra-Part

Relations

Apply System

Specs

Build Assembly

Constraints

Choose a Sub-System

Configuration

Configure An

Product

 Build System

 Solution
Choose a System

Configuration

Choose a Component

Configuration

Build Intra-Part

Rules & Relations

 Apply Inter-

Component

 Relations

Apply Assembly

Constraints

Build System

Specs

 Build Sub-system

 Solution

 Build Component

 Solution

 Build Inter-

 Component

 Relations

 Instantiate Component

 Templates

 SmartPart
Configurator

Demo–Salient points

• Defined new rules for creating SmartParts
• Reusability

• Rules fired to build new product tree
• Extensibility

• Each product tree has three components of
SmartPart
• Systematization

• Interpart relations were established to bind
components of the SmartPart
• External links eliminated, maintainability

Demo–Configuring For Specs
 Product

Configurator

 Build a Component

 Templates

Apply Intra-Part

Relations

Apply System

Specs

Build Assembly

Constraints

Choose a Sub-System

Configuration

Configure An

Product

 Build System

 Solution
Choose a System

Configuration

Choose a Component

Configuration

Build Intra-Part

Rules & Relations

 Apply Inter-

Component

 Relations

Apply Assembly

Constraints

Build System

Specs

 Build Sub-system

 Solution

 Build Component

 Solution

 Build Inter-

 Component

 Relations

 Instantiate Component

 Templates

 SmartPart
Configurator

Aggregation

Demo–Salient points

• Specs parameters & constraints passed from
“systems” to “subsystems”, to “components,”
to “parts” during “decomposition” and vice
versa during “aggregation”

• Smart Parts were “instantiated” and
constraints satisfied

• Solution is reconfigurable for changing spec
requirements

Engineered design…

…directly from spec

• Good for early program stages
(Quick evaluation of various “alternate
designs” scenarios)

• Gets you 80% there and you can finish
the rest (20%) in native CATIA mode

Engineered design…

…directly from spec

Gaining the most from KBE

• Take a holistic view of your product
development needs

• KBE has its own life. Think about integration
and interfaces. They are big deal for KBE.

• Employ a modular, open, and concurrent
strategy for building KBE systems

• Think engineering centric versus geometry-
centric; analysis driven, geometry is a by-
product

• Follow a knowledge management framework
for applying KBE

Gaining the most from KBE

Knowledge Management
Framework (KEPT)

System
Architecture

SmartPart
Concept

SearchAttribute
Methods

Best
Practices

Gaining the most from KBE

• Leverage Knowledge (K)
• Capture and maintain intellectual

capital
• Use spreadsheets for inputting

specs, material data and rules since
interfaces are system-maintained

• Try not to fragment your knowledge and
rules into multiple systems / multiple interfaces

• Great value in storing your rules & equations in
your strategic PLM system

K E P T

Gaining the most from KBE

• Engage Enterprise (E)
• Establish a knowledge sharing

culture
• Educate about KM, KBE, and its

benefits
• Create a cross-functional KBE team
• Make it easy for SME’s to contribute and

maintain knowledge
• Appoint Knowledge Keepers
• Use proactive promotion for KBE thinking

K E P T

• Develop Automated Process (P)

• Identify value-streams
(e.g., streamline repetitive tasks)

• Automate to design processes
(e.g., Product Configurator, SmartPart
Configurator, and others)

• Develop strategies to minimize interfaces

Gaining the most from KBE

K E P T

Gaining the most from KBE

• Apply Advanced Tools (T)

• Use system engineering techniques

• Build inside CATIA V5 using
Knowledge Advisor (KWA),
Knowledge Expert (KWE), and
Product Knowledge Template (PKT)

• Minimize writing version dependent code

K E P T

Special Credit

Dr. Brian Prasad
and the KDA Team at Parker CSD

Virtual Services
MSC.Software

bprasad@parker.com, jrogers@parker.com

www.parker.com

Questions?

bprasad@parker.com, jrogers@parker.com
www.parker.com

Watch for us on the History Channel’s
Modern Marvels, May 12, 2004

