

A Knowledge-Based System Engineering Process For Obtaining Engineering Design Solutions

Brian Prasad and Jeff Rogers Parker Hannifin Corporation

Aerospace Group Control Systems Division—Irvine, CA

Parker CSD

ASME DETC2005-85561

Parker CSD

Parker CSD

Parker CSD

Product-development process

Parker CSD

anything Possible.

Typical design scenario

Parker CSD

What's wrong with this?

- Knowledge is fragmented
- Subject matter experts (SME) often scarce and busy

- Less uniformity and consistency
- Time-intensive, manpower dependent
- When people retire, information is lost
- Often design is done via trial and error case-based reasoning

Knowledege-centric approach

Parker CSD

Enrichment of knowledge...

Parker CSD

Let's consider this situation

Parker CSD

Serial, tightly-coupled KBE system

Parker CSD

Drawbacks of procedural process

- Part and product specific
- Hard-coded interfaces
- Cumbersome to maintain
- Incompatible API's
- External parameter linking issues
- Very sensitive to interface changes (parameters, rules, features)
- Expansions are complex and error prone
- Inflexible

Modular, rule-based KBE system

An assembly of parametric parts, where dependence of one part to another is controlled by a "control structure logic"—whose primary function is to link relationships and attributes throughout a product hierarchy resulting in a product assembly that is associative.

Parker CSD

Modular systems approach

anything Parker Possible.

Modular KBE System

Product Lifecycle Management (PLM) Implementation

Parker CSD

Open, concurrent KBE system

Parker CSD

Merits of modular process

anything Parker Possible.

A CATIA V5 implementation

- System Architecture
 - JustOne system model and common tree structure
- Generative Rule Bodies
 - Rule bodies create more rules dynamically on the tree; asleep until awaken
 - Retrieve templates; no generative geometry
- Internal Linking
 - Two generalized automation methods to pass/exchange information intrapart and interpart

Specs Definitions (Excel Inputs)

		В	С	C D		E	F		G		<u> </u>	I		J			
4	1	Constraint Name	Туре	Value (ir	Con	straint Orienta	First Pro	duct	First Publicat	ion		Second Pro	Second Publica	ation	Co	mpute	
4	2	CY2PP_Axial_Coincidence	Coincidence		CatC	stOrientUndefined	Cylinder		Cylinder_AxisLir	ne		PPiston	PPiston_AxisLine		Y		
5	/ 3	CY2REEG_Axial_Coincidence	Coincidence	nce CatCs		stOrientUndefined	DrientUndefiner <mark>Cylinder</mark>		Cylinder_AxisLine			REEndGland	REEG_AxisLine				
6	4	CY2REEG_Transverse_Parallel	Parallel	Ilel Cat		atCstOrientSame Cylinder			Cylinder_TransverseLine			REEndGland	d REEG_TransverseLine				
7	E 5	CY2REEG_Contact	Coincidence	cidence Cat		atCstOrientOpposite Cylinde			CylinderNutBoreThread_REEndGland_Conta			ontacREEndGland	nd REEGMiddleRing_Cylinder_Contact			_ _	C
8	6 CY2EGLockNut_Axial_Coincidence Coin		Coincidence		CatCstOrientUndefined		Cylinder	(Inder Cylinder_AxisLine				EGLockNut	EGLockNut_AxisL	Y			
9	(7 CY2EGLockNut_Transverse_Parallel Parallel			CatOstOrientSame		Cylinder	nder Uylinder_TransverseLine				EGLockNut	EGLockNut_TransverseLine		Y N	<u>'</u>	
10	8	8 CY2EGLockNut_Contact Contact			IN/A CatCatOriantUndefiner		Cylinder	Cylinder_EGLOCKNut_Cor					CEEG Aviel ine				
10	10 CY2CEEG Transverse Parallel Pa		Parallel		CatCstOrientSame		Cylinder Cylinder		Cylinder TransverseLine		CEEndGland		CEEG Transversel ine		Y		
10				475.0		4.50			<u> </u>	2 SH	160			3			
12	Non	n_PTank_Pressure (psi)		175.0	101	150	J.UU1		600.001	<u>a or i</u>	400		<u>, 1 0</u>		<u> </u>	+	_
13	Non	n_STank_Pressure (psi)		100.0	JU1	150	J.001		600.001		160	600000.00	<u>, 1</u>	3			
14	Lim	iit_Load_Compression (lb	f) 1	20060.0)01	180060	0.001	(61600.001	NG	160	50000.00)1 0	3	5c4	4a0	
15	Lim	nit_Load_Tension (lbf)	1	12140.0)01	112140	0.001	(61600.001 <mark>5</mark>	RMS	160	600000.00)1 0	2			
16	Ulti	mate_Load_Compression	(II) 1	80090.0	001	180090	0.001		92401.001 <mark>-</mark>		160	0,00003	11 0.25	3			
17	Ulti	mate_Load_Tension (lbf)	1	<u>68210.0</u>	001	168210	0.001		92401.001 <mark>,</mark>		160	50000.00	1 0.25	25	<u> </u>	+	-
18	Ulti	mate_Load_Side (lbf)		8	300		800		400		400	50000.00	0.25	2.0	<u> </u>		
19	End	lurance_Load_Fatigue (lb	o f) 1	04400.0)01	104400	0.001		51334.001	NG	160	50000.00	J1 0.25	2.5			
20	Pro	of_Supply_Pressure (psi)		6000.0	001	6000	0.001		6500.001		160	50000.00	0.25	2.5			
21	Bur	st_Supply_Pressure (psi)		10000.0	001	10000	0.001		10820.001	NG	160	50000.00	0.25	2.5			
22	Imp	oulse_Supply_Pressure (p	si)	6000.0	001	6000	0.001		6100.001	NG	160	50000.00	0.25	2.5			
23	Pro	of_Tank_Pressure (psi)		4000.0	001	4000	0.001		1275.001	VG	160	50000.00	0.25	2.5			_
24	Bur	st_Tank_Pressure (psi)		6000.0)01	6000	0.001		2125.001		160	50000.00	1 0.25	2.5	<u> </u>		-
25	Imp	oulse_Tank_Pressure (psi)		2000.0	001	2000	0.001		_ 700.001 <mark>4</mark>		100	30000.00	0.25	2.0	<u> </u>		_
26	Imp	oulse_Load_Cycles_Fatig	ue	1000.0)01	1000	0.001		5000.001								_
27	Stro	oke_Nominal (in)		9.4	187	9	9.487		8.592								
28	Ret	ract_Length (in)			24	34	4.957		33.394	NG	160	50000.00	0.25	3			
29	Bea	aring_Friction_Coeff_Proc	of	0.	.15		0.15		0.15								
30	Bea	aring_Friction_Coeff_Burs	t	(0.2		0.2		0.2								
31	Bea	aring Friction Coeff Fatio	que	(0.1		0.1		0.1								

Parker CSD

anything Parker Possible.

Parker CSD

anything Parker Possible.

Achieving a Product Solution

Parker CSD

anything<mark>-Parker</mark> Possible.

Inter- & Intrapart communications

Brian Prasad & Jeff Rogers

Parker CSD

Parker CSD

Demo–Salient points

- Initialize parameters
- SmartParts pulled and Rules added
- Specs parameters & constraints passed from "systems" to "subsystems", to "components," to "parts" during "decomposition" and vice versa during "aggregation"
- SmartParts were "instantiated" and constraints satisfied
- Solution is reconfigurable for changing spec requirements

Engineered design...

...directly from spec

- Good for early program stages (Quick evaluation of various "alternate designs" scenarios)
- Gets you 80% there and you can finish the rest (20%) in native CATIA mode

Brian Prasad & Jeff Rogers

Parker CSD

Engineered design...

• Unbalanced tandem actuator with 4100 psi supply pressure and 9.49 inch stroke.

...directly from spec

Engineered design...

 Balanced simplex actuator with 3050 psi supply pressure and 3.89 inch stroke.

...directly from spec

Parker CSD

Key Benefits

- Knowledge resides in one system and reused widely across the enterprise
- Order of magnitude savings (1:10 ~ 1:100)
- Promotes collaboration & knowledge sharing
- Product independent architecture
- Experts now become knowledge-keepers
- Promotes innovations and creativity
- Good for preliminary studies & portfolio mgt
- Knowledge inside, Lean inside, standards inside, analysis inside, best practices inside

Keys to maximizing KDA gains ...

- KBE has its own life. Think about integration and interfaces. They are big deal for KBE.
- Holistic view of product development process
- Employ a modular, open, and concurrent strategy for building KBE systems
- Think engineering centric versus geometrycentric; analysis driven, geometry is a byproduct
- Follow a knowledge management framework for applying KBE

Questions?

Contact: Brian Prasad or Jeff Rogers

bprasad@parker.com jrogers@parker.com

Parker Hannifin Corporation Aerospace Group Control Systems Division—Irvine, CA

Parker CSD