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Abstract: Languages are means of capturing the knowledge for the design and development 
of a product. Smart Models are the results of su(.;h kI1owku~e capture. The author, first 
describes how languages for knowledge capture have evolved over a thirty year time period. 
Author through literature search finds such languages to fall into three major classes: (a) 
Geometry-based language (b) Constraint-based language (c) Knowledge-based language. 
The paper then describes the differences and similarities of these languages that can be 
employed to capture life-cycle intent. The second part of the paper describes how such 
languages are being used in creation of smart models. A smart model is a reusable 
conceptualization of an application domain. The models contain the knowledge (attributes, 
rules or relations) of the application domains forming the basis for future problem solving. 
The paper also describes two popular ways of formulating a problem that leads to such smart 
models: (1) Constraint-based programming (2) Knowledge-based programming. Through 
analysis of existing practices, new development and trends, the paper then discusses some 
"new emerging directions in the use of languages for the knowledge capture". Finally, the 
benefits of knowledge capture and creation of smart models over conventional models are 
discussed. 

1. Introduction 

Except in a few rare cases, products are now so complex that it is extremdy 
difficult to correctly "capture" their life-cycle intent right the first time no matter 
what C4 (CAD/CAM/CAE/CIM) tools, productivity gadgets or automation widgets 
are used. Traditionally, CAD tools are primarily used for activities that occur at the 
end of the design process. Such usage of CAD tools, for instance, during detailing 
geometry of an artifact. is in generating a production drawing, or in documenting 
geometry in a digitized form (See Figure 1). CAM systems are conventionally used 
to program machining or cutting instructions on the NC machines for a part whose 
mock-up design, clay or plaster prototype may already exist. CAE systems are used 
to check the integrity of the designed artifact (such as structural analysis for stress, 
thermal, etc.), when most of the critical design decisions have already been made. 
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Studies have revealed that 75% of the eventual cost of a product is determined 
before any full-scale development or a CAD tool usage actually begins [l]. 
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Figure I: Re-<.lo versus Reusable Approach LO CAD Modeling (a) Re-<.lo Approach (b) Re­
generative Approach 

Most C4 tools in use today are not really "capture" tools. The need for "change" 
after a design model is initially "built" is all but inevitable. Today, CAD models are 
built from scratch only when engineering activity is complete, and are validated via 
a series of design reviews. Design work-groups typically document the design 
through CAD softwarez only after the completion of major engineering processes 
and after resolving all· of the pressing engineering issues. A work-group captures 
the geometry in a static form, such as lines and surfaces. Static representation is 
actually a documentation that tells a designer what the final design looks like but 
nul huw il has come tu be. If changes are re4uire<l in Lhe design, a new CAD mu<lel 
is recreated (see Figure 1) using some types of computer-aided "re-do" or "back­
tracking" methods. Such CAD methods of activating change or modification (e.g., 
a redo or a backtracking) can be extremely time-consuming and costly being that 
late in the life-cycle process. In such static representations of geometry, 
configuration changes cannot be handled easily, particularly when parts and 
dimensions are linked. In addition to the actual process that led to the final design, 
most of the useful lessons learned along the way are also lost. In the absence of the 
latter, such efforts have resulted in loss of configuration control, proliferation of 
changes to fix the errors caused by other changes, and sometimes-ambiguous 
designs. Hence, in recent days, during a PD3 process, emphasis is often placed on 
the methods used for capturing the life-cycle intent with ease of modifications in 
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mind. The power of a "capture" tool comes from the methods used in capturing the 
design intent initially so that the anticipated changes can be made easily and 
quickly later if needed. By capturing a "design intent" as opposed to a "static 
geometry," configuration changes could be made and controlled more effectively 
using the power of the computer than through the traditional CAD attributes (such 
as line and surfaces). "Life-cycle capture" refers to tht{ definition of a physical 
object and its environment in some generic form [2]. "Life-cycle intent" means 
representing a life-cycle capture in a form that can be modified and iterated until all 
the life-cycle specifications for the product are fully satisfied. "Design-capture" 
likewise refers to the design definitions of the physical objects and its surroundings. 
"Design-intent" means representing the "design capture" in a form (such as a 
parametric or a variational scheme) that can be iterated. Design in this case means 
one of the life-cycle functions (see Figure 4.2 of Volume I [3]). In the future, CAD 
models will be reusable. The new models will be bmlt by instantiating the old ones 
and validating them via computer (using simulation, analysis, sensitivity, 
optimization, etc., see Figure 1). Such models will have some level of intelligence 
built into them [ 4]. 

2. languages for life-cycle Capture 

Languages are means of capturing the knowledge for the design and development 
of a product. Models are the results of such knowledge capture. The primary goal 
of knowledge-capture formalism is to provide a means of defining ontology. 
Ontology is a set of basic attributes and relations comprising the vocabulary of the 
product realization domain as well as rules for combining the attributes and 
relations. Engineering Analysis Language (EAL), for example, provides a means of 
creating analysis or design models as run streams. Later, they fuuu the ua:si:s fur 
iterative analysis and design [5]. ICAD/IDL, on the other hand, captures the 
knowledge about the process of designing and developing a product [6][7]. There 
are three types of languages that can be employed to capture life-cycle intent: 

a) Geometry-based language 
b) Constraint-based language 
c) Knowledge-based language 

Figure 2 shows an evolution of languages for capturing knowledge over a thirty 
year time period. These are C4 (CAD/CAM/CIMJCAE) specification languages for 
product engineers or designers to define configurations of parts and assemblies. 
They are not computer languages for software programmers (such as C, or C++ ). 
During this thirty-year period, there had been a tremendous innovation. 

• The first generation of C4 languages, first introduced during 1960, only dealt 
with 2-D drafting and 2-D wire-frame design. 

• The second generation of C4 languages dealt with surfaces and 3 D solids. 
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Figure 2: Evolution of Languages for Knowledge Capture 

• The third generation of C4 language was constraint-based but mostly dealt 
with geometry. Examples include case-based design, parametric scheme, 
variational scheme, etc. During the period from 1980 onwards, there was a 
history of developments in making C4 codes more user friendly, use of a solid­
based geometry engine (CSG versus B-Rep) and introduction of part library 
concept. There was also a flurry of activities in the use of techniques, such as 
parametric schemes, variational schemes, featured-based concepts for creating 
product structure and for defining geometnc primitives L4J. 

• The fourth generation of languages. Today is the age of fourth generation C4 
languages. which is quite different from the past. Fourth generation of 
languages are knowledge-based techniques giving CE design work-groups the 
ability to capture both geometric and non-geometric information. 

Languages for Life-cycle Capture = u [Geometry-based language, Constraint­
based language. Knowledge-based language l 
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Figure 3: A Computational Architecture for a typical Knowledge-based System 

3. Knowledge-based Systems (KBS) 

Knowledge-based Systems (KBS) are software programs designed to capture and 
apply domain-specific knowledge and expertise in order to facilitate solutions of 
problems. Languages 1.::an be used as means to build KBS. Knowledge-based 
Engineering (KBE) deals with processing of knowledge. There are many ways to 
capture knowledge to control its processing. KBE is a process of implementing 
knowledge-based systems in which domain-specific knowledge about a part or a 
process is stored along with other attributes (geometry, form features, etc.). A 
computational architecture for a typical knowledge-based system is shown in Figure 
3. It consists of five layers, each layer supporting the others. 

• Environment: The first layer is an environment, which provides a foundation 
for the rest of the layers. A typical environment consists of a slew of operating 
systems, standards, and compute platforms (workstations, hardware, etc.). 

• Enablers: The second layer consists of core enablers. Some of the key enablers 
included at this layer are: distributed processing, dynamic scheduling, real time 
rule language, rule compiler, knowledge-based graphics, GUI, geometry 
engine, relational database management system (RDBMS), legacy system, 
input/output servers, message servers, etc. 
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• Intelligent Interface: The third layer adds intelligence to the enabling tools 
(second layer) and gives a programming interface to build the end-user 
applications. Most knowledge-based engineering tools encompass five critical 
technologies within an object-oriented architecture: 

(a) Rule-based reasoning 
(b) Procedural programming 
(c) Object-oriented programming 
(d) Hypothetical reasoning with consistency management 
( e) Case-based reasoning. 

• End-user applications: The fourth layer is made out of end-user applications. 
It consists of a high level object-oriented language, a rule builder, and a code 
generator similar to a CASE tool. 

• Procedures: The topmost layer embodies the procedures for the users' code. 

3.1 Geometry-based Language 

In the past, knowledge about products was mainly present in the form of geometry. 
Now 3-D solid geometry, as opposed to surfaces, wire-frames and other forms of 
geometry, is being used more often. Most traditional languages are geometry-based. 
They capture the attributes of solid primitives including lines and curves of a 
modeled object and their relationships to each other. Some high-end languages also 
capture information about the space inhabited by an object or about its enclosure 
(for example, Constructive Solid Geometry-solids). Some modelers develop 
complex solids by adding an extension to the traditional Boolean (join, intersect, 
and subtract) operations. For example, a combined solid can be driven by a 2-D 
sketch. As illustrated in I-DEAS Master series [8], the sketches can also be driven 
by geometric elements of other solids. Most solid modelers, however, fail to draw 
on knowledge about what the object is, its relationship to other objects or 
components, or its life-cycle aspects. Constraint-based CAD programs speed the de­
sign-change process by controlling and constraining object relationships based on 
dimensions (size, orientations, etc.), positioning, or geometrical inputs. However, 
such programs still focus on the geometrical aspects of the product development, 
not the knowledge about its life-cycle manufacture. 

3.2 Constraint-based Language 

Constraint-based language provides facilities for defining constraints. Most 
constraint-based languages provide means of incorporating arithmetic, logical 
functions, and mathematical expressions within a procedure. Such constraints may 
have a simple, linear algebraic relationship between entities to control shape (e.g., 
the length of line A is twice the length of line B) or geometry. The examples of 
geometric relationships include horizontal and vertical leveling, parallelism, 
perpendicularity, tangency, concentricity, coincidence, etc. Some constraints 
provide means to define and solve a system of linking equations that constitute a set 
of necessary design constraints and bounds. Finite element analysis and sensitivity 
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analysis are some of the options that are generally considered an integral part of a 
constraint-based language. Such languages encompass command structures, symbol 
substitution, user-written macros, control branching, matrix analysis functions, 
engineering data base manager and user interface to integrate complex multi­
disciplinary analysis, design, and pre- and post-processing work tasks. 

Finite element systems usually consist of: 

(a) A set of preprocessors through which a team defines finite element meshes, 
applied loads, constraints, etc., 

(b) A central program that primary performs numerical computation 
(c) A set of post-processors for displaying the results. 

They do not provide instantiation needs. An issue often encountered in a 
conventionally structured program is how can CE work-groups go beyond what the 
FEA programs provide. If it is necessary to perform functions that are not explicit 
capabilities of a program, the only recourse available to the teams is a very 
expensive and time-consuming one. The product developer has to write a new 

module (in a conventional language, such as FORTRAN, C or C ++)that operates 
on an output data file produced by the finite element analysis program. The 
constraint-based language largely eliminates this difficulty, making it very easy for 
teams to integrate complex and highly specialized analysis and design tasks, and to 
create specialized input formats and output displays. Another class of constraint­
based languages that use AI techniques is based on solving a constraint satisfaction 
problem (CSP). Formally a CSP is defined as follows [9]: 

Given a set of n variables each with an associated domain and a set of constraining 
relations each involving a subset of the variablPs, find an n-tuple thn.t is an 
instantiation of the n variables satisfying the relations. 

In the CSP approach, most of the efforts are in the area of solving a constraint 
satisfaction problem automatically. Most design problems, on the other hand, are 
open-ended problems. They are evolutionary in nature requiring a series of frequent 
model updates and user interactions, such as what is encountered during a loop and 
track methodology (discussed in section 9, [3]). How to manage such team 
interactions in the CSP approach has been the topic of research in the AI 
community for some time. 

3.3 Knowledge-based Language 

In a knowledge-based engineering (KBE) system, work-group members use a 
design language to build a smart model of the product. Formalism for defining 
smart models is a knowledge-based representation paradigm for describing the life­
cycle domain knowledge. KBE languages go well beyond parametric, variational, 
or feature-based geometry capture mode to a knowledge-based life cycle capture 
mode. A design work-group does not just design parts. Work-groups design 
products -- a collection of functional parts placed in an assembly to form a finished 
(that is a functional) product. A KBE language provides ways to capture geometry 
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and non-geometric attributes, and to write the rules that describe the process to 
create the assembly. 
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Figure 4 Definition of the "physical" Object 

Such rules might include design stresses, resultant volume, or other parts' 
positioning, mating and orientation rules. These rules form a part of an intelligent 
planning procedure derived from a domain specific knowledge. The use of 
intelligent planning procedure in KBE replaces an exhaustive enumeration of all 
feasible assembly plans that would have been needed otherwise. Most of the present 
KBE languages use object-oriented techniques. Unlike constraint programming Ian 
guages, which define procedures for the manipulation of objects and entities, 
knowledge-based languages define classes of "objects," and their characteristics 
and behaviors that pussess built-in manipulation capabilities. KBE languages 
capture the totality of the functions and relationships between model elements. 

The following are some of the characteristics of a knowledge-based language: 

• Object symbols or Attributes: In a KBE language, object symbols or attributes 
arc the backbone of the system. Attributes describe object geometry, overall 
physical parts, its environments, location of the parts within that environment, 
and any other characteristics that are required. Figure 4 shows a definition of a 
physical object and a tew examples of some associated attributes. Some 
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attributes that are fixed are defined as constant-attributes. Variable attributes 
are design specifications whose values change. Inputs and children of an object 
are considered as variable attributes. Most of the physical attributes are fixed 
attributes. KBE languages allow a team member to define attributes in any 
order but they are internally recognized as "keywords." Directional and 
positioning keywords are keyword exampks shuwn in Figun: 4. Keywords 
enable "demand-driven-operations" to take place [6][7]. 

• "Demand-driven" Operations: In this mode the system determines the "order" 
and the "necessity" to evaluate an attribute. If a value for an attribute is 
demanded for the first time, the system computes the value and remembers it. 
Tn suhseqnent operations of the same attribute, when its value is required. the 
system returns the "cached" value instead of recomputing it. This method of 
evaluation, called "demand-driven evaluation" [6], is considered an important 
property for recalculating the value each time it is demanded. This type of 
operation relieves the programmer from assigning the order in which to 
evaluate the attributes. This makes programming in KBE languages 
significantly easier than in other languages. 

• Frame Structures with Rules: Frames are object-oriented structures that allow 
for the storage of attribute information as object hierarchies. Frame representa­
tion is, thus, convenient for the storage of geometric dimensional and 
quantitative knowledge. Rules are used to implement the procedural 
expressions. The combination of an object-oriented frame structure with m les 
results in an adequate framework for capturing life-cycle manufacture 
knowledge. 

• Symbolic logic: Symbolic logic is an underlying logic theory used in KBE to let 
knowledge engineers represent and manipulate the various types of knowledge 
required in CE. Symbolic logics are composed of object symbols (attributes), 
predicates, frame structures with rules, classes and instances, and kind-of 
inheritances. Simple logic statements can be connected using logical 
connectives to form compound logic statements. The set of such logic 
statements -- simple or compound -- is commonly called the logic theory. A 
full accounting for how objects and relations in the real world map to the logic 
symbols forms an "interpretation" of this logic theory [10). 

• Classes and Instances: Most KBE languages allow definition of classes and 
instances. Classes are generic descriptions of objects, and "instances" are 
specific outcomes of an object-class. An object is a software packet that 
contains a set of related data and procedures. An object's procedures are called 
its methods. Objects communicate by sending messages to other objects 
requesting that they perform one of their methods. Object is an occurrence, or 
instance of a class. KBE languages often provide tools such as browser to 
represent objects and review instances, both graphically and non-graphically. 

• Kind-of inheritance: The language allows definition of a "new class" from an 
"old-class" where the "new class" is derived from the "old class" with some 
"same but except" characteristics. A new dass is saiJ to inherit a portion of 
definitions from an existing class. Users only define the "except" changes, for 
example, "square" is a "kind of inheritance" from a "rectangle" object class. 
Inheritance allows the developer to define generalized behavior classes that can 



534 

be used by multiple, slightly different subclasses. It also allows existing classes 
to be extended and modified without changing the source code. This is 
accomplished by overriding methods at the subclass levels. It supports the 
creation of object models by allowing object designers or programmers to 
specify class hierarchies through selection of methods. The resulting object is 
maintained in a storage-independent form. 

• Generic Parts: A generic part is an object-oriented structure that includes 
engineering rules, methods, attributes, and references to the children of sub­
parts. The KBE language provides options for specifying the parts' attributes as 
variable attributes with no initial values specified. Other attributes are defined 
as a function of the variable attributes_ Generic parts receive their attribute­
values by means of "inputs" at run-time. The concept is useful since the generic 
parts' family can be replicated or instantiated at run time merely by specifying 
the required inputs for each part throughout an assembly. The generic parts can 
encapsulate other sub-parts or contain positioning or assembly information. 

• Referencing-chain: Referencing chain is a useful concept to access an object or 
an attnbute ot a tree from any other place in the tree. It is often used to define 
dependencies that exist or are desired between children. An access is permitted 
by identifying a path that leads to the object whose attribute descriptions are 
required. In the definition of a physical object, shown in Figure 4, a referencing 
chain is shown connecting an "environment definition" with "physical parts" 
definitions. The concept is useful since attributes or parts can be retrieved by 
passing messages without actually replicating the source code, reasoning or 
logic behind the definition of the parts or the attributes. 

Methods of Capturing Life-cycle Intent = u [Attribute definition, "Demand­
driven" Operations, Frame Structures with Rules. Classes and Instances, Kind-of 
inheritance, Generic Parts, Referencing-chain] 

Depending upon the available library of primitive parts, some languages are easier 
than others are. 

4. Creation of Smart or Intelligent Models 

An important component of a smart or an intelligent model is the ahility to define 
geometry in terms of parameters and constraints. Constraints are rules about 
dimensions, geometric relationships or algebraic relationships. A smart model is a 
reusable conceptualization of an application domain. The models contain the 
knowledge (attributes, rules or relations) of the application domains forming the 
basis for future problem solving. Rules define how design entities behave, for 
example, whether a hole-feature is through or blind. In the case of a bhnd-feature, it 
the part becomes thicker and the cylinder is not long enough, the hole will become a 
blind hole. Unlike blind-hole feature, a through-hole feature understands the rule 
that cylinder must pass completely through the part and will do so no matter how 
the part changes. There are two ways of formulating a problem that leads to smart 
models: 
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Constraint-based modeling (CBM) or programming yields constraint-based models. 
Knowledge-based programming results in knowledge-based models. The major 
differences between the two model types (constraint-based modeling and language­
based modeling) in contrast to the conventional modeling (traditional CAD/CAM 
system) are shown in Figure 5. In conventional modeling, the geometry is captured 
using a static representation of wire-frames, surfaces or solids, i.e., the geometry is 
captured in digitized (fixed value) form. The modeling process is largely 
interactive. In constraint-based modeling, since the mechanism of geometry capture 
is through parametric, variational or feature-based techniques, each model 
represents an instantiated (or dynamic) geometry. Thus, by setting new values to the 
CBM attributes, several instances of the geometry can be obtained. Knowledge­
based modeling (KBM) is similar to constraint-based when it comes to capturing 
the geometry. However, because of its abilities to capture non-geometric 
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information and to associate rules with attributes, KBM is also suited for capturing 
life-cycle intent. Other contrasting features of CBM and KBM are listed in Figure 5 
and further explained in the following: 

4.1 Constraint-based programming 

Constraint-based Programming (CBP) is a concept of formulating a problem in 
terms of "constraints," which may be a part of a product definition, a process 
definition, or an environment for the problem definition. No distinction is made 
between types of constraints or their sources. A spreadsheet program is a simple 
example of a constraint-based programming. Here equations representing constraint 
relationships are input to cells in a spreadsheet program. There is a close 
resemblance between design rationale (DR) l 11 J and spreadsheets. Equations that 
are entered into cells of a spreadsheet are analogous to "capturing" DRs, and 
computed cell values in the spreadsheet program are analogous to "identifications" 
of DRs. The cells themselves constitute the "knowledge" of CBP. If smart models 
are thought of as a series of spreadsheets for a concurrent team, "programming" in 
CBP is analogous to specifying the relationships between the cells of a spreadsheet. 
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Figure 7: Difference between Parametric, Variational and Knowledge-based Schemes 

The following are some typical constraint parameters that can be employed during 
constraint-based programming: 

=:::> Design specifications 
=:::> Design criteria 
=:::> Subjective qualifications 
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=> Design constraints 
=> Manufacturing constraints and tolerances 
=> Material properties 
=> Geometry 
=> Sectional properties 
=> Configuration and topology 
=> Heuristics or rules 
=> Historical data 
=> Performance requirements 
=> Test specifications and data 

Figure 6 shows a three-way comparison between a set of key characteristics of 
smart models (created using constraint-based and knowledge-based programming 
approaches) and conventional models. Three key categories employed for 
comparison are: "types of representations", "types of relationships between 
parameters and constraints", and the method of solving the constraint satisfaction 
problem. They are shown in Figure 6 as columns of a matrix. The modeling 
categories (conventional and smart models) are listed as rows. A cell of the matrix 
shows the differences in the approaches used in each modeling category. In the 
conventional models, the geometry compatibility (such as line and arc constraints) 
and consistency issues are resolved through computational geometry, linear algebra, 
B-spline and NURBS techniques. In CBP, product design problem is defined in 
terms of constraints and the inter-relationships that exist between them (see Figure 
7). Constraints may be a part of 

• Product definition, such as geometry, materials, size, etc. 
• Process constraints such as assembly constraints, tolerances, fits/clearances, 

etc. 
• Product environment such as loads, performance, test results, etc. 

In Constraint-based modeling, the constraints are of explicit/algorithmic or 
algebraic types. They are resolved through a set of linear and nonlinear 
programming, optimization and optimal remodeling techniques (see Figure 7). Such 
methods help develop a set of individualized criteria for life-cycle design 
improvement (more than what it generally appears lo be the case). For example, on 
the surface it would appear that parametric generation of parts would not be a 
significant improvement over the "fixed-dimension" (static geometry) approach. In 
both cases, initial geometry definitions have to be captured and shared with other 
users of the information. The real advantages come if there is a large amount of 
change processing to be done to the original design. In a traditional CAD 
environment, this could be very time consuming and cumbersome. In knowledge­
based modeling, in addition to the types of relationships specified for CBP, the con­
straint set also contains implicit/heuristics type of rules. Inference engines 
(backward and forward chaining) or constraint propagation techniques are 
commonly used in conjunction with object-oriented programming to resolve the 
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imposed constraints (see Figure 7). The knowledge-based programming approach is 
discussed in Section 4.2 in greater depth. 

Figure 8 shows a sample set of parameters for a typical CBP environment. The 
types of environment depend on the descriptions of the functional intent behind the 
product or the process that are modeled. The key parameters surrounding a 
constraint-based smart model are: 

=> Geometrical, sectional and configuration variables 
~ Manufal:turing engineering design criteria and heuristic rules 
=> Performance requirements, cost, efficiency data, and customer satisfaction 
=> Design specifications or constraints 
=> Manufacturing tolerances or constraints 
=> Material selection or qualification 
=* Library of parts, CAD data 
=> Historical or subjective qualifications 

In constraint-based programming, algorithmic tools such as analysis, simulation, 
generic modeling, sensitivity, and optimization are often used as an integral part of 
the design process. The original set of parameters is grouped into three categories: 
design variables, Vj, performance functions, fi, and design constraints, ci· The 

dependencies between performance and design constraints with respect to design 
variables are controlled through sensitivity analysis: 

Sensitivity= 

df l 

dv· l 

Additional discussion of the problem formulation can be found in Section 4.8 of 
Chapter 4 [12]. 

4.2 Knowledge-based Programming 

Knowledge-based Programming is another way of creating a smart model as shown 
in Figure 9. In order to develop an integrated view of PD3

, which is rich and 
comprehensive, it is necessary to include a variety of knowledge sources and 
representations. Knowledge-based representations deal with explicit knowledge, 
implicit knowledge and derived knowledge. 

• Explicit Knowledge: Statements of explicit knowledge are available in product 
or process domains as retrievable information like CAD data, procedures, 
industrial practice, computer programs, theory, etc. They can be found both 
within and outside of a company. The explicit knowledge can be present as a 
set of engineering attributes, rules, relations or requirements. Inside knowledge 
deals with observations and experiences of the concurrent work-groups. 
Outside knowledge sources include papers, journals, books, and other product 
design and standard literature. 
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Figure 8: A Constraint-based Smart Model with Key Parameters 

• Implicit Knowledge: Statements of implicit knowledge are mainly available as 
process details such as memory of past designs, personal experience, intuition, 
myth, what wurk_c;;J, what Jiu not, etc. Difficulties arise when such processes 
are obscure, e.g., intuitive or creative. Implicit knowledge includes skills and 
abilities of the work-groups towards the application tasks and problem solving 
methods. Implicit knowledge that is found outside the work-group circles is 
mostly in case studies and discussion dialogues. Difficulties arise when such 
implicit knowledge has not been articulated in a form that allows ease of use 
and transfer. 

• Derived Knowledge: Statements of derived knowledge are those that are 
discovered only by running external programs, such as analyses, simulation, 
etc. Derived knowledge is like extra- or interpolation of the current domain for 
which explicit knowledge is missing or incomplete. Undiscovered knowledge 
has been the driving force of most research and development organizations. 

Knowledge-based programming software offers three basic benefits: capture of 
engineering knowledge, quick alterations of the product within its acceptable 
gyration, and facilitation of concurrent engineering. 
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Implicit Knowledge 
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(Personal experience, 
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o 30 CAD Model 
o Mfg. Reports 
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Reports 

o Company Policy/Regulations 

o Practices 

Figure 9: Salient Features of a Knowledge-based Smart Model 

• The first strategic benefit is due to KBE system capturing engineering knowl­
edge electronically. This capture allows companies to leverage scarce 
engineering expertise and to build on the knowledge acquired slowly over time. 

• Second. the system permits design variations to be generated rapidly by 
quickly changing a long list of inputs while maintaining model integrity. 
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Products designed on the KBE system can practically design their own tooling. 
The system also enables designs to rough out their own macro process plans 
automatically by drawing on knowledge for similar GT designs. 

• Third, KBE systems have been shown to enable concurrent engineering. 
Design, tooling, and process planning all benefit by working from a common 
integrated smart model that is able to represent, retrieve, and integrate 
engineering knowledge from many different sources and disciplines. 
Knowledge-based engineering reduces two of the most common problems that 
arise with team-oriented CE: boredom and time. 

~ Boredom: Boredom crops into most traditional processes as part and 
parcel of their detail. Work-group members do not find it attractive to 
check hundreds of common drudgery details that occur every-time a new 
design is obtained -- from checking its specifications to tolerances-as part 
of a PD3 cycle. The idea is to capture those design and manufacturing 
issues which impact the design of "most products, most of the time." This 
action is justified based on 8020 rule. This is commonly called the 80:20 
heuristic or Pareto's law of distribution of costs [13]. In a typical situation, 
80% of the assignments are routine or detail works and only 20% are 
creative (Figure 10). Pareto's law states that while only 20% of the 
possible issues are creative, they generally consume about 80% of work­
group resources. The 80% of the assignments that are routine do not seem 
to cause any significant product's problem or consume as much resources. 

=;. Shorlage of time aud resources; The second problem is shortage of 7Ts, 
and resources. Many concurrent team members are not able to find enough 
time to devote on actual design process due to their heavy occupation with 
other time demanding chores such as staff-meeting, E-mail notes, 
management briefings, technical-walk-throughs, design reviews, etc. 

KBE reduces boredom by attending to the 3Ps details in ways that reflect design 
procedures, standards, company policies, and compliance of design and 
manufacturing codes and regulations. By packaging the life-cycle behaviors into a 
smart model, KBE improves productivity and automation. The 80% of routine tasks 
is reduced to a 20% level (see Figure 10). The CE work-groups spend more time 
adding functional value to the design (in the saved time) rather than repeating 
engineering calculations for each case or recreating existing design items. If the 
traditional cycle-time were reduced from an initial total of 30 months to 20 months 
using smart models, the following calculation applies (see Table 1). 

The work-group is able to concentrate more on satisfying the creative tasks up to a 
maximum of 80% of the reduced cycle time. They are freed from worrying about 
meeting the drudgery details (routine tasks) that previously took up 80% of the total 
cycle time in the traditional method. Thus, even after spending 40% of the work­
group engineers' time more on creative tasks, there was a surplus of two months 
using smart models compared to the time it took following traditional method. 



543 

Time Saved= Total Cycle-time - Reduced Cycle-time 

Total 
Cyc!e­
time 

Traditional Method Smart Model 

Time Saved 

Reduced 
Cycle­
t1me 

Time 
Saved 

Time Saved = Total Cycle-time - Reduced Cycle-time 

Figure 10: Key Benefits of Knowledge-based Engineering 

Table 1: Comparison of Savings 

! 

Actions or · Traditional Smart Models Remarks 
tasks , Methods 

Total time taken to 30 months 20 months Assumptions 
finish the tasks 

Ratio of time spent 24/6 months 4/16 months Following the 
doing (80%/20%) definitions of 
routine/creative (20%/80%) smart and 
lasb in months traditional 
(percentage) models 

If 40% more time 12 months ( 40%) 8 months ( 40%) This shows 
is spent doing how you can do 
creative tasks then more with less. 
number of extra 
months needed 
-· . ......._.._.~ .... 

Difference in time 12 Months (deficit) 2 months (surplus) 
compared to 
traditional Method 
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5. Discussion and Future Trends 

Depending upon the frequency and need for creating modified designs, it is 
desirable to weigh the benefits. Alternatives are either to apply an additional effort 
and the time required to develop the smart models or to carry on the design in a 
traditional way. KPowledge-based development of design may not be worth the 
effort if each design is a unique design and significant changes to the product over 
its life cycle are not expected. However, this perspective changes quickly if one 
attempts to view the worth with respect to the overall company performance. 
Techniques like parametric, feature-based and knowledge-based models all 
facilitate Concurrent Engineering and Collaborative Engineering. Some techniques 
offer better capabilities than others do. For example, parametric or feature-based 
techniques can change the geometry of the design very quickly. However, in doing 
so, design work-groups no longer have the assurance of knowing if all, or indeed, 
any of the non-geometric (e.g., engineering and manufacturing rules) have been 
violated. Through Knowledge-based engineering, one can capture, besides 
parametric geometry, the engineering and manufacturing rules for geometric 
modifications. When the specifications demand a new geometric design, the 
corresponding rules are automatically engaged to meet the engineering and 
manufacturing requirements and to achieve the best possible compromise. An 
interesting aspect of this approach is that one can capture and build trial processes 
(such as levels of analysis iterations, sensitivity, optimization, etc.) into a TPM in 
order to establish the best design. The effect of these trials is to automatically run 
thousands of analysis iterations in the background before the final design is 
:st.:kdctl. All of this can be transparent to the work-group members, who simply 
want to feed in specifications and are interested in reviewing the outcome that 
works. Most of the smart techniques provide some form of an electronic control 
over the design process which can afford a dramatic reduction in change processing 
such as design revisions, design changes, etc. The term automatic generation is 
construed as computer-aided generation of outputs such as design renderings, 
process plans, bill-of-materials, numerical control instructions, software 
prototyping, machining, replacement parts, product illustrations, etc. If an 
electronic capture of design intent is extended to include automatic or partially 
automatic design generation, the worth of electronic capture of design increases 
substantially. Furthermore, if such generation is done in 3-D solids that do not 
require assembly information in downstream processing, electronic capture 
becomes almost an irrefutable requirement of the product definition process. 

In recent years use of smart models are increasing. More and more product 
development teams are capturing product and process-related knowledge. While 
their usage is increasing there is this need to make the captured knowledge in smart 
models used (leveraged) more widely across an enterprise. To facilitate such 
"knowledge reuse" product development teams are following standard techniques 
and tools for h11iltiing such smart models. Thus, creation process for building Smart 
models is becoming more and more structured. The four main elements that make a 
smart model more structured are: 
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1. Objects, independent problem domains and tasks: Objects and the system are 
partitioned into a number of relatively independent loosely coupled problem 
domains so that the decomposed tasks are of manageable size. Each sub­
problem can be solved somewhat independently from other domains and each 
can be performed in parallel. This is discussed in Chapter 4 -- "Product 
Development Methodology [12]." 

2. Design Rationale: Irrespective of the modeler used for creating smart models 
(knowledge-based modeler or constraint-based modeler), the modeler splits the 
data into rule-sheets and frame-sheets. The rule-sheets contain the equations, 
and the variables are automatically placed in the frame-sheets. Additional 
sheets can be defined as needed, such as data settings, constraints-sheet and 
tables where results are tabulated, and plot-sheets which define how results are 
plotted. This gives the design problem a symbolic structure rather than a 
numerical processing structure. The other advantages of using design rationales 
are (11]: 

=:;} Definition of objectives and constraints are in terms of problem 
parameters, design rules, or intent with possibly incomplete data. 

=:;} DRs establish a set of relationships (explicit or implicit) between 
parameters and constraints. 

=:;} DRs capture the informal heuristics, or chains of reasoning, rather than a 
set of well defined algorithms. 

3. Method of solving the constraint based problem: This is discussed at greater 
length m Chapters 4.1 and 4.2 of Concurrent Engineering Fundamental Book 
[12]. 

4. Databases, Technical memory or knowledge-bases: Databases, technical 
memory or knowledge-bases derived from a surrogate product can serve as a 
basis for developing smart models and conducting strategic studies [ 13]. When 
actual pmrlnct ctata is not available, a surrogate object can take the place of a 
technical memory. Later, when actual data becomes available, the information 
in technical memory is replaced on a modular basis and the information model 
can be updated dynamically. 

6. Concluding Remarks 

Knowledge-based programming (KBP) provides an environment for storing explicit 
and implicit knowledge, as well as for capturing derived knowledge. When these 
sets of knowledge are combined into a total product model (TPM), it can generate 
designs, tooling, or process plans automatically. Unlike traditional computer­
assisted drafting (e.g., a typical CAD) programs that captme geometric information 
only, knowledge-based programming captures the complete intent behind the 
design of a product - "HOWs and WHYs," in addition to the "WHATs" of the 
design. Besides design intent there are other knowledge (such as materials, design 
for X-ability, 3Ps, process rules) that must be captured. Knowledge-based 
Engineering (KBE) is an implementation paradigm in which complete knowledge 
about an object (such as a part) is stored along with its geometry. Later when the 



546 

part is instantiated, the captured knowledge is utilized to verify the 
manufacturability, processiability and other X-abilities concerns of the part. One 
important aspect of knowledge-based engineering is the ability to generate quickly 
many sets of consistent designs instead of just capturing a single idea in a digitized 
CAD form that cannot be easily changed. Knowledge-based programming tech­
nology encourages development of a "generic" smart model that synthesizes -- what 
is needed in many life-cycle instances in complete detail. This is a most flexible 
way of creating many instances of a model, each being a consistent interpretation of 
the captured design intent. The interpretation is the result of acting on rules 
captured through the smart models by feeding in the specific inputs at the time of 
the request. 

The current trend in smart models creation is to: 

(a) Use some structured process for capturing the knowledge content and 
(b) Store those rules and knowledge outside the smart models in some neutral 

object-oriented datahases 

This way others could access them in more places, if they need them, during the 
product development across an enterprise. 
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