Ibid- Caltech Library System

Electronic Delivery Cover Sheet

WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted materials. Under certain
conditions specified in the law, libraries and archives are
authorized to furnish a photocopy or other reproduction. One
of these specified conditions is that the photocopy or
reproduction is not to be "used for any purpose other than
private study, scholarship, or research". If a user makes a
request for, or later uses,a photocopy or reproduction for
purposes in excess of "fair use", that user may be liable for
copyright infringement. This institution reserves the right to
refuse to accept a copying order if, in its judgement,
fulfillment of the order would involve violation of copyright
law.

Jun 04 02 02:26p

1 ILL S1D: 0Z519Y IL

Beginning of record displayed.
ILL Pending 20020603 Record 8 of 8
CAN YOU SUPPLY ? PYES PNO PCOND PFUTUREDATE 1
p :ILL: 7561599 :Borrower: CIT tRegbate: 20020603 :NeedBefore: 20020703

:Status: PENDING 20020603 :RecDate: :RenewalReq:

:0CLC: 447463638 :Source: OCLCILL :DueDate: :NewDueDate:

:Lender: *0OVV,0VV 1
p :CALLNO: q
p TITLE: Encyclopedia of microcomputers / g

P :EDITION: COULD YOU PLEASE SUPPLY THIS ARTICLE, YOU ARE ONLY HOLDER. THANKS,
CALTECH. ***%x%x

» :IMPRINT: New York ; B # : Marcel Dekker, 2000. €

) :SERIES: Encyclopedia of microcomputers / Kent, A. ; Williams, J.G.
no. 4 9

p :ARTICLE: Biren Prasad and Subra Ganesan: Concurrent Engineering and Work-

7 25,

group Computing', 4

p :VOL: Book Chapter :NO: :DATE: 2000

:PAGES: 73-95 b |

TUERTFTED: <TN:134448>QCLC €

:PATRON: Prasad, Brian ¢

:SHIP TO: CALTECH/TLL/MILLIKAN LIBRARY 1-32/PASADENA, Ca .
:BILL TO: SAME ¢

v v v ¥

CONCURRENT ENGINEERING AND
WORK-GROUP COMPUTING

INTRODUCTION

Design and development of a product is a complex undertaking, During a product design,
development, and delivery {PD") lite-cycle aspect, a product goes through a number of
changes. Some changes may be present as specifications. Some of these specifications
make it robust; others are required to test the product under extreme operating conditions.
Inital design specifications must accomumodate the diverse environments that a product
is subjected to during its normal life. The specifications or characteristics associated with
a particular environment of a product constitute a framework that dictates an initial phase
of irs design. A study of a complete product life-cycle reveals varying operating condi-
tions that must be accounted for during a product realization—PD’—process. Frame-
works are conceptual models of the operating conditons. All of these frameworks to-
gether form an architecture. Because the environments depend on each other. so do the
frameworks. The goal is to develop a series of “building blocks™—concurrent engineer-
ing (CE) frameworks—that would provide the CE work-group members in a large dis-
persed organization the same freedom of interaction and information transfer as enjoyed
by a small collocated team (1).

CONCURRENT ENGINEERING

The concept of concurrent engineering was initially propused as a potential means to
minimize the product-development time. Since then, many interpretations of “concurrent
engineening” have emerged in literature. Today, CE is much more encompassing. Expec-
tations range from modest productivity improvement to a complete push-button-type au-
tomation, depending on the views cxpressed. CE is a paralleled approach-—replacing the
time-consuming linear process of serial engineering and expensive prove-outs. It s in-
tended to elicit the product developers, form the outset, to consider the “total job” (in-
cluding company’s support functions). Some common definitions are as follows:

* Concurrent engineering is “‘a systematic approach to i integrated, concurrent
design of products and their related processes, including manufacture and sup-
port.” “This approach is intended to cause the developers, from the outset, to
consider all elements of the product life-Cycle from concepuon through dis-
posal, including guality, cost, schedule, and user requirements” (2).

CE ¢ Paralleling of (Life-Cycle Functions) m

¢ Concurrent engineering is “‘a systematic approach to integrated product devel-
opment that emphasizes the response to customer expectations. It embodies
team values of cooperation, trust, and sharing in such a manner that decision

73

74 Concurrent Engineering and Waork-Group Computing

making proceeds with large infervals of parallel working by all life-cyele per-
spectives carly in the prucess, synchronized by comparatively brief exchanges
to produce consensus.™

CE ¢= Paralleling of (Life-Cycle Functions)

+ Consensus + Cooperation 12]

» The Compuler-sided Acquisition and Logistics Support (CALS) Office defini-
tion of CE from Military Handbook-59 is “a syslematic approach to creating a
product design that considers all elements of the product life cycle fram concep-
tion through disposal.” In so doing, “CE defines simultancousty the product, its
manufacturing process, and all other required life cycle processes, such as logis-
tic support.” “CE is not the arbitrary elimination of a phase of the cxisting,
sequential, feed-forward engineering process, but rather the co-design of all
downstream processes toward a more all encompassing, cost effective optimum,
... Concurient Enginecring is an integrated design approach that takes into
account all desired downstrcam characteristics during upstream phases to pro-
duce a maore robust design that is lolerant of manufacturing and uge variation,
at less cost than sequential design.”

CE & Cost-Elfective Robust Design
{Conception Through Disposal)
+ Simultaneous Design-of
All Downstream Processes During Upstrcam Phascs [3]

¢ Concurrent engineering is a goal-directed effort, where “ownership™ is assigned
mutually among the entire group on the “total job” to be completed, not just
“picces” of i, with the understanding, thal the team is empowered to make
major design decisions along the way. This definition is more suited to a virual
CE enterprise, where each regional husiness unit is essentially its own separate
business responsible for products sold in that region. Regional business units
are empowered to make design decisions based on goals set with parent organi-
zation (with conslancy of purpose).

CE <> Minimization of Total Life-Cycle Time 14}

» Concurrent engineering is a product development methodology where up-front
“X-abilities™ (such as manufacturability, serviceability, quality, etc.) arc consid-
ercd part of the product design and development process. X-abilitics arc not
merely for meeting the basic functionality or a set of limited strategies, but for
defining a product, that meets all the customer requirements.

CE < Up-Front Consideration of ANl X-abilities (51

= The nartow view of concurrent engineering is “integrating product and process
design.” The wide view is “integrating over the product life” and the wider
view is “integrating over the enterprise”.

o

CE < lategrating Product and Process Design over the Enterprise [6]

The most commonly referred to definition is that of Winner, Some experts recog-
nize influencing agents of CE as forces of change. We have chosen o divide forces that
influecnce the domain of CF into scven agents (culled here as 7 Ts): talents. tasks, tcams,

Concurrent Engineering and Work-Group Computing 75

techniques, technology, time, and tools (see Figure 4.1 of Ref. 2). One of the primary
team issucs is the decomposition of tasks. The people’s issue 1s the composition of teams.
Teams are often used to cooperatively solve the problem. Technology issues anise due to
drive tor competitiveness. Examples of popular technologies in CE are soft prototyping,
visualization, product data managemecat, design for X-ability, multimedia, electronic data
interchange (EDI), and so forth. Tools mean software, hardware, and networks that make
CE practical in today’s world of multinational corporations, multipartner projects, and
virtual corporations. From the ¢me point of view, CE is an initiative of the product-
development community that has the goal of reducing the length of the product design
and manufacturing cycle time by allowing teams of engineers to develop design modules
concurrently from thetr perspectives (3). Training also plays an imporant role in CE. A
popular word in the business press is reengineering, meaning, in short. revamping the
process by which one satisfies customers needs. From a business angle, CE means reen-
gineering the product-development process so that tasks are organized concurrently. The
Department of Detense (DOD) and some aerospace companies refer to CE as mtegrated
product development (IPD).

IPD < Minimize Cycle Time + Paralleling ot Life-Cycle Functions [7}

DISTRIBUTED COMPUTING

Most traditional architectures are based on mainframes and minicomputers connected
through a centralized relational database system (RDMS). Most of the RDMS (e.g., Ca-
Ingres, Oracle. Sybase, DB2, etc.) provide a typical semblance of remote computing (see
Fig. la). However. their centralized nature of installation causes performance problems,
storage retrieval delay, and maintenance problems. Personal computers, on the other
hand. provide better access for doing routine tasks but are not designed for use by a
gronp of peaple (called work-gronps). They nsually lack computing power and are not
well connected. Local-area network (LAN) or wide-area network (WAN) is usually
added on an ad hoc or afterthought basis.

Distributed computing can provide a balanced solution for large-scale multidiscipli-
nary computing if appropriately designed (see Fig. 1b). Workstations and servers shared
by a group of teams (called work-groups) are the two main ingredients for building a
distributed computing network ¢nvironment for concurrent cngincering. The smallest unit
of this network is called the work-group nctwork. A typical work-group network unit
comprises of one or more clients, consisting of powerful desktop workstations, interact-
ing with one or more servers that store and manipulate information. Relevant programs
are stored on the servers so that they can be accessed from any workstation on the
network. This cnables an efficient and timely sharing of data and resources among all
the members of a work-group connected to a network. A work-group network is equipped
by design to provide the right computing resources (capacity and power) for a specific
group of concurrent teams to do their job efficiently. Depending on the size of the work-
group, one or more work-group networks may be needed and interlinked. A distributed
computing eavironment consists of a chain of nterconnected networks linking to work-
groups at various levels in a CE organization like a tree structure. The connections be-
tween a CE unit and the rest or organization are established in the following way (see
Fig. 2):

70 Concurrent Engineering and Work-Group Compuiing

. Host Computer . .

CTTIEI‘ETTD

T
o o) o
]

CAD Tenninals

D(_,

CAD Terminals

Departments I-L ;

Departments E-1
. U USSR |
4
/ (a) Traditional Computing
Traditional
Host Computers
T
T (170
Emerging | \) NN O U O Y |
T s - [LAN Unified Data Base SRR R R 0 -
I { - i 1
.................... __.i)
) i by :
b 3 J f
[i lf_j
‘ == =2 Y, X s eSS e X
i COe/Work Sialions \ ‘ E-j u g ‘ COe/Work Stations i
‘_ . Waork Gln‘:\fpil\»un) ' “ [53&3‘3 ASTER FEIE EEA ; Work Groups I-1 :
""""""""""" i COe/Wak Stalions ST
: { COe: Consistent Office Tavironment
! Work Groups E-H J

(k) Diswibuted Camputing

FIGURE 1 Information processing: (a) traditional computing and (b) distributed com-
puting.

¢ A PDT unit through a “work-group network”

e A PDT’s design unit through a “design center network”

* A PDT’s manufacturing unit through a “manufacturing center network”

e The executives on top management board through an “enterprise network”

The networks are all a part of a network taxonomy for a distributed computing
environment. A center nelwork may consist of a center/unit server and one or more of
these linked work-group networks. An enterprise network forms the corporate-level
server connection down to the centerfunit networks. It provides work-group access to
oreanization-level applications such as business and office automation tools. A distrib-

Concurrent Engineering and Work-Group Computing 77

Magufactnring Center
Network

Design Center
Network

Client/Scrver

Enterprise Network
——

E — A
= tf'“] (g

Basiness Offics
Automation =5,
Toe

Work-group Network Work-group Network

A distributed epplication environment suports users scross everything from
a smalt workgroup to corporate-wide network computing resources.

e

' __Nciwnrking Environment

N <1

t

'

FIGURE 2 Distributed applications environment.

uted application environment is thus capable of supporting concusfent teams across every
level from a soall work group to corporate-wide computing resources. Others in the
team who have need to access information can do so through the remote connection
(e.p.. SNA protocols) as shown at the bottom of Figure 2. Servers, at each center, are
desipned to provide the needed compute power and to be responsive to individual run-
stream commands. Recent trends, thereforc, are 1o replace the central database stored
on mainframes and minis by distributed databases on server-based computers. CORBA
(Common Object Request Broker Archilecture) provides a distribuied objects™ capabil-
ity—an abibity 1o invoke objects residing on multiple platforms,

WORK-GROUP COMPUTING

In recent years, an archilecture called “work-group computing” has emerged due to the
efforts of many workstation vendors competing for CE market share (SUN, HP, DEC,

78 Concurrent Engineering and Work-Group Computing

and IRM, among others). It provides a better integrated environment for CE compared to
LAN-based PC networks. With “work-group computing,” computing tasks are distributed
hetween “clients,” consisting of powerful desktop workstations and “scrvers” that store
and manipulate information (see Fig. 3). Work groups are provided a view into the com-
puting complex through a “window™ created by the client workstation. They may. how-

Ethernet

Sund
Mainframe
ﬁ
Q@: IBM 3174

1BM 37XX

é vC
Psr2 S — S_ ?1‘
Micro-VAX
é“ . @
" S
Faesimile Cray
u -
m
IG!—___.@‘GS}‘ 1 Symrehsonous Hoef
\ i | t
Mac-11 [ﬁl
VAX
Printer
Unix Host

X Display Servers Ethernet X Clients

FIGURE 3 Work-group computing.

Concurrent Engineering and Work-Group Computing 79

ever, be linked with virtually anyone else (see Fig, 3). The X-display servers can range
from a printer, to a facsimile, to a workstation. Although mainframes, minicomputers
and microcompulers suffice for general needs, there will always be a need for more
specialized machines. That is why work-group computing is bujlt around client—server
architectures. In addition, modem databases can be distributed over many different ma-
chincs, so work-groups can create and execute applications locally on their own comput-
ers. These applications could lovk and fecl just like separate programs. Here, individual
workstations—the clicnis—handle the local processing needs; the server has the power
and capacities to actess data from distributed databases beyond that of an individual
workstation. They may provide heavy-duty number crunching, distributed databases, and
links to outside resources. When a work-group runs the applications from any worksta-
tion, it draws on the resources of all the related applications and databases over the
nctwork no matter where they physically reside o1 are stored. This distributed concept
maximizes the computer power needs of the work-groups with the least amount of invest-
ments,

Work-group computers are designed fiom the ground up. The inteation is 1o help
teams work together and automate group processes, including engineering, manufactur-
ing, and other complex tasks. Because open systems are built around industry standards,
they can be integiated eusily with existing equipment from various vendors. Work-group
computing provides the pawer to perform individual tasks with easc while opening up
the possibilitics of information sharing between parallel work-groups. Figure 4 illustrates
the shift in key characteristics when moving from personal computing to work-group
computing, The shift pulls everyone—teams, computers, networks—transforming dispa-
rate computers into one flexible, easy-to-use client—server-based system. The individual
task-orienied environment of personal computing activities becomes a set of goal-ori-
ented parallel work-group activities. The use of a distributed database over the network
becomes the mainstream norm for file management as opposed to a Jocal database resid-

r Personal Compnuting Work-group Computing
=
-
Clients
Server

Client/Server (EWS)

Individual A
Task-Oricnted iei————————
Local database

Parallel Workgroups
Goal-Uriented (Constancy-of-Purpose)
Distributed Database Over the Server

[
Persons| Planner/Calendar wmmmg- | Oroup Scheduling, Work Flow
Resource Mamagement
Spreadsheers REERgEe— | Corporate Decision Making
L

FIGURE 4 Shift from personal computing to work-group computing.

80 Concurrent Engineering and Work-Group Cempuiing

ing in onc’s own personal computers. The use of a personal planner and a calendar is
replaced by a group scheduling system and electronic work-flow resource management
system. With work-group computing, nunulacturing organizations, small and large, can
all benefit from concurrent engineering,.

Parallel Work-Groups

While implementing CE, 2 major challenge an organizalion faces is to provide a seamless
connection hetween parallel work-groups and romputing machines. Work-group compnt-
ing provides a basis of distributing the work into cohesive parallel tcams working in
close association with each other. An example of such a distribution is shown in Figure
5. Here. four concurrent work-groups—engineering. design, prototyping, and manufac-
turing—are shown to be working logether, each with its own work-group compuling
system. The terminals represent the concurrent tasks that are being pedformed by a term
within a work-group. For example, in a design work-group, different teams at any point
may be working concurrently on tasks such as concepl design, detail design, solid model-
ing, detailed analysis, drafting, and so forth. Scheduling of work-group tasks follows the
integrated product development (IPD) methodology as discussed in Ref. 4. The division
of tasks follows the hierarchy of the breakdown structure tress [work breakdown struc-
tures (WBS), product breakdown structures (PIBS), process breakdown structuics
(PsBS), and so forth] (2). Transparent communication and access o common databases
provide a mode of constant communication and frequent interaction between the work-
groups. The network is represented in Figure 5 by a thick horizontal wavy line. It runs
continuously and crosses through the work-group partitions not shown in Figure 5. The
vertical down-arrows connect the work-group workstations, terminals, personal comput-
ers, mainframe, minicomputers, and the corresponding Jdatabase scrver to a network. The
network ensures that the messages created by a work-group or 2 team member are passed
on to the wark-groups and that the changes that affect the design outcome are propagated
throughout the CE organization.

CONCURRENT ENGINEERING ARCHITECTURE

A compendium of abstractions (called frameworks) leads to a CE architccture. These
levels of abstractions are not progressive in nature (have no definite sequencing order)
but arc nced based (sce Fig. 6), hence they arc called frameworks. These frameworks are
as follows:

* Dircctional framcwork
s Conceptual framework
e Relation framework
@ Logical framewaork
» Physical framework
» Application framework
= Instruction framework

The folfowing sections deseribe cach in more detail,

Concurrent Engineering and Work-Group Cumpitting &1

. Design Work-group
i Existing

Malofame or oD
! Mini Repsrements

Preliminary

. e
: g'l R&D ' i
ey 5

ErRs =ty =

' i Modetin Amalyzis

|] - Compute| ===

. ey [E Server

| Hipz=l

y

Solid

,' =49 Modoiin Analysis
’r n Computr | ===
4 o ™ BV
. Existing (7 i Ny . Serve
{ Mainframe or "
Fini i
| tompurier l
! ———
P aisting Protolyping Worl-group

Sciemific

Visalizstio

Group Graghics EI'
Technolog Simulgio
YT v

Mkdsing ™~ 7 T 0T T Manufacturing Worlcgronp oo

|
. .
3 Process "
N e Prod:
i % Plannin E-—"“Q 'mwue:;:: !
ST L v n 5,
l ool .
] Manulucturing A a Enginecrin |
Dalabase g
Server

FIGURE 5 The parallel work-groups of concurrent engineering.

Directional Framework

The directional framework focuses on the enterprise’s global needs (vision, mission,
objectives, goals, etc.). A top-level abstraction for a CE architeciure defines the product
vision in relation 1o external (sometime referred to as uncontrolled) environments such
as vendors, suppliers, field support, markeling, and customers. Examples of system
frameworks are the Air Force's Integrated Compuier-Aided Manufacturing (ICAM) pro-
gram, CASA/SME (Society of Manufacturing Engineers), CAM-1, and imany others. The

82 Concurrent Engineering and Work-Group Computing

Otdvat | Difectional
Needs| Framework
/ Business Concckl
/ Needs Framewor
Systems Relational
Needs Framework
Subsystems Logical
Needs Framework
/uncn'nnal Physical
/ Needs Framework
/
/
/ Agents Needs Application Framework
£. »n
/ Operational Needs Instructional Framework
Lo
Types of Needs

/I\ CE Frameworks

.

FIGURE 6 Type of needs and CE frameworks.

dominant means to meeting the challenges are global thinking, common tools, consistent
dandards. and uniform mcthodology applicd across the enterprise.

CIMOSA Architecture

Very few methodologies cover the entire PD’ development cycle—from analysis to oper-
ation to maintenance of a CIM system. CIMOSA (Open System Architectore for CIM)
15 one of the most complete methodologies in terms of life-cycle coverage (sce Figure 7).
It was developed by the AMICE consortium in 1986 under the auspices of EC ESPRINT
(European Strategic Program for Research and Development in Information Technology)
project funding. The AMICE (European CIM Archilecture—in reverse) consortium now
comprises 15 companies and research institutes from 8 European countries.
CIMOSA architecture is comprised of the following:

A Modeling Framework. This provides modeling structurcs—how CIM systems
should be modeled. 1t organizes the CIMOSA reference architecture into a ge-
neric and partial modeling level, each one supporting different views on the
particular cnterprise model. CIMOSA has defined four modeling views: func-
tion, information, resource, and organization. This set of views may be extended
as well. This concept of views allows teams to work with the subset of the model
rather than the complete model. Users can view only what they are interested in
viewing, hiding the complexity from the particular area of cancern.

Concurrent Engineering and Work-Group Compuiing 83

Generation of Views

l |

| 5 [

| I

R

| Instantiationof | G" f‘_‘_" o “_r_ B_"_ f"_l _________ I

I Building Block Partial Level]

I """"""""""""""""""""""""""" ~ Re ;

N quirements
| Particular Leve x Definlitan ’
! 1

| I 5 i |

| - : |

l u £ R & E ," *w Design l

n o e 2 P Specificstion
N N SR L IR ; |
c . :

! t m o ! n {

| . 4 rA ' |

[i i u a o ;

l 0 ; r ¢ m y = Implementation |

l \y I s YR | TR | SO (oA B AP S I S Description }

o 1
e C

‘ Derivation of n g (

‘ Models View / l

‘ View jew View View View 1

| |
|

L ot e e e et e —— e —— e e e

FIGURE 7 CIMOSA architecture.

System Life Cycle. This describes the operations or tasks to be used to generate
CIMOSA models. The architecture supports modeling of three life-cycle opera-
tions: requirements definition, system specification definition, and implementa-
tion desciiption. The sequence of modcling is optional (i.e., modeling may start
at any of the life-cycle phases and may be iterative as well).

An Integration Infrastructure. This provides a set of generic (system wide) infor-
mation technology (IT) service entities and resources to support the exccution of
CIMOSA models in a heterogeneous environment. The types of service include
management entity, business entity, common entity, information entity , presen-
tation entity: resources include information technology resources and manufac-
turing resources. Control on the execution of the implementation description
model is provided by the “business entity,” which receives the events and creates
occurrences of the domain process and all of its contents.

84 Concurrent Engineering and Work-Group Computing

These three together form a three-dimensional framework for the models, as shown
in Figure 7, also known as the “CIMOSA CUBE.” CIMOSA provides the basic frame-
wark for evolutionary enterprise modceling. CIMOSA is based on the ubject-oriented
conceplts ol inheriance (i.e., structuring 1s constructs in recursive sels of object classes).

Conceptual Framework

The conceptual framework addvesses high-tevel CE business perspectives (e.g.. stiate-
pics, objectives/goals) for developing a PD' system (1), Exanples and tools that fall in
this category are multidisciplinary or cross-functional team, work-groups, guality func-
tion deployment (QFD) and its replacement, concurrent function deployment (CED), total
quality management (TQM) and its replacement, total valuc management (TVM), and so
forth,

Relational Framework

The relational framework expands conceptual perspectives into system needs and then
forms the next level of abstraction. As the name suggests, it describes the relationships
hetween processes and progrars, The Air Force ICAM program and its successors have
generated exlensive relational models of manufacturing organization (5). Many changes
have come about in this architecture from the time it was inilially introduced. The grow-
ing PDES/Express specification is a good example of a relational model lor product-
definition databases, although Express is also being used as a data-definition mechanism.
Less formally, the Commission of the European Communities (CEC)-—ESPRIT (Euro-
pean Strategic Planning for Rescarch in lnformation Technology)/CIM program has gen-
erated a book-sized Nowchart description of a typical product-development organization
(A). The key to meeting the CIM challenge is enferprisewide system thinking on the
relational framework, with standards being the glue (o make it all stick.

Logical Framework

The togical framework defines subsystem necds, It depicts logical design information
with respect 1o a relational framework . It provides eymbolic deseriptions of the processes
and programs to define the fogical view of the system. The types of symbols that identify
the structures of the framework are CAD, CAM, CAE, object-uricnted databases, and so
forth.

Physical Framework
The physical framework delines the {unctional needs for logical and relational frame-
works so that they can work logether. This level of abstraction defines the following:

s A compuler system

s A network that connects a collection of computers

= A data representation [e.g., data-definition language (DDL), structured query
language (SQL), etc.]

= A communication interface like Ethernet

e A database that stores the underlying information

An example of a Lypical physical framcwork for a computer system is shown in

Cuonvcurrent Engineering und Work-Groupy Computing 85

Figure 8. The operaling system and utilities are shown lo be the gatekeepers for [/O
transfers {0 CRT terminals, peripherals, and other computers.

Application Framework

The application framework defines the agent’s view. This defines the specifications of
the physical framework components in relation to both hardware and software needs such
as operaling systems (DOS, UNIX, ctel), basic programming languages {PLY, UNIX, C,
C++, FORTRAN, etc.), and hardware platforms (IBM RT's, SUN, HP, etc.).

Instruction Framework
This is the lowest Ievel of abstraciion and provides the basic instruction sels for computer
pragrams or systems. This may include dala encoding, character coding, data conversion,
and program formats (real, alphanumeric, or floating point). Although instruction frame.-
works have counsiderable impact on physical applications, their lack of standardization is
a well-known annoyance.

In the aforementioned section, CE architecture was classified into seven levels of
abstractions. Figure 9 summarizes the salient features of each level with examples and
tools in a tabular form. The examples and tools are only representative samples to show

oS- - - m T Tm o m o Tm e 1
. g T
! _ Computer System ,
. Application Operating Database |
! Program 1 System & Manzgement @ R .
R TUPBEAN Y] Uiilities System Database |
i ; '
' Program |
i Daiabaze Examples: .
. !
I L - Indexed Files - 0S/400 :
) A A - CA-Ingres - RMS |
! - Oracle - VSAM
. | - Informix - CA-Datacom |
| s - Sybase - DB2
/o] Vo pile {
i .
. 3 i
l }
| y Y .
= E T |
B 1
- EEEh |
Ve ' |
! . To To other)
CRT T/ 0
eominal Peripherals Computers !

FIGURE 8 Exarples ol a physical framework.

86 Concurrent Engineering and Work-Group Compuling

Type Description Examples and Tools]
EtSrprise gloval iceds and difechons
Directional (Vision, Mission, Objectives, Gosls, etc) Air Force ICAM Program, CIM-OSA,
High level reference models IBM CIM, CASA / SME, CAM-1, etc,

The high-level requirements or taxenomy for QFD, Multi disciplinary tcams
developing a product or & system. It addresses Wori; group, TQM, etc. ’
1he major business needs ’ ’

Coneeptual

Relational descriptions of processes

Relational ot programs (not executable). i addresses the| [DEF, PDES / Express, ESPRINT/Aruice
E-R models process, ete.

major Systems nevds

Logical Symbolic descriptions of processes or Design, Obijeet data bases, CAPP, CAE,
programs to define the sysiem, It defines the CAD, CAM, etc.
major subsystem needs.

Physical It defines the functional needs for Relational | DDL SQL, Ethernet, TCPAP, and other
and Logical framewarks to work together, communication Interfaces.

. I . DOS, Unix, . cic.
Application fpccxﬂcah;ns Z((.23/ phzmca; féamcwog PLL C, C+t, Foffran, efc.
omponents — hardwares end Softvar JEM RT, SUN4, HP, etc.

Basic instructional set — Data descriptions, CISC /RISC lnstruction sets,

Instructional i
Inlormation flow and foomats character codes, Tormats,

FIGURE 9 Salient features of CE architectures.

the wain distinctions among these different levels. The boundary between (wo consecu-
tive frameworks such as application framework and instructional framework, o1 physical
framework and application framework, is rather fuzzy. The first four frameworks, direc-
tional, conceptual, relational and logical, are more distinct than the rest. Their models
are mwore formally defined than the rest and, unlike the others, they are not directly
executable by computer programs or systems. Logical and physical frameworks are
closely related. Although not executable in the same enviranment, logical and physical
frameworks share the same goal. They represent a major contribution to the success of
the product life cycle and, together, they constitute a “computational environment” for a
CE-based PD® system.

CE COMPUTATIONAL ARCHITECTURE

Computational architecture (CA) is a 3-in-1 deal—a fusion of three framework compo-
nents: relational, Jogical, and physical. Because of their relevance to the CE field, this
article focuses on computationa) architecture.

A CE developmental environment is actually an implementation of relational and
logical objects into a particular physical architecture. An object is a particular design
method, too, or an advisor that is executed {rom within a computational environment.
The object may be “extensible™ (i.e., other tools are accessible as native resources for an

Concurrent Engineering and Work-Group Computing 87

application) or “open” (i.e., the facilities of that object are made available to other touls).
A server is an object that provides facilities to other objects without a direct user interface
of its own, An extensible environment that provides feams access to the facilities of one
or more servers, work-groups, and foreign codes is called an “open environment.”

Requirements for a Computational Architecture

In Ref. 2, the requirements for concurrency between different work-group configurations
and their depree of involvements were presented in a matrix form (see Figure 4.13 of
Ref. 2). Although significant portions of any computational framework meeting these
reguirements must be inchuded, concurrent enpineering systems must also operate under
other kinds of constraints related to infrastructure (see Figure 6.13 of Ref. 2). A computa-
tional aschitecture for CE must exhibit the following qualities:

s Accommodate distributed computing environment. Computational architecture
must support a distributed computing environment based on an open-network-
ing context to allow teams to work collaboratively, unhindered by types of
computer platforms, operating systemns, network protocols, and so forth. The
CA shonld have seamless commimication among work-groups (with appro-
priale level of security).

o Existing applications and product-development procedures. Because of larpe
prior invesiment in tools and commitments (v ongoing operalions, most organi-
zations will not be able to start with a clean slate. The CA should work tempo-
rarily with the legacy system without interrupting operations significantly for
any reason while a new framework is being designed, developed, and installed.

* Emerging frameworks and applications architectures. Vendors and organiza-
tions developing software and hardware will continue to produce new frame-
works/applications. This might dictate changes to the data or configurations ol
the computational framework. The computational architecture should allow all
such tools to be integrated so that minimal effort is required to move data from
one tool/application to the next.

s FEfficiency. Methods, tools, and advisors within the framework should ron at
speeds comparable Lo their independent execution. Syslem overhead must be
commensurale with the benefits accruing from its use.

CE Developmental Environment

One of the purposes of computational architecture is lo easily build new end-user applica-
tions that not only provide a new set of CE functionality but are integrated with the rest
of CE applications developed earlier. As a development platform, the computational
framework for CE can be specified in terms of the following nine-layver toolkit user
interlaces, command language, high-level application language, programming language.
geometry engine, data and memory management, the interface engine, communication
and networks, and, finally, standards. The specifications apply to the syntax, semantics.
and representations of each of the above nine basic functional layers. Computational
architectures range in complexity from time-sharing operating systems and conventional
fanguages (FORTRAN-like) lo the newer object-oriented languages and databases de-
fined by organizations like the CAD Framework Initiative (CFl) and some of the system
vendors. Today, many computational architectures (as a developmental toolkit) seem to
converge on some variation of the following nine-layer conliguration (Fig. 10):

8%

Concurrent Engineering and Work-Group Computing
[]
Facility Description
{. User Machanism for user to nctivate and monilor applicatian facilities
Interface {Window to the world)
2. Command Language for delining user interfaces and capturing command ssquences
Language
T .
3. nghf:t L'evcl Symboll: representations of stlributes inputs/Quiputs and other design and
Application mnnufacturing parameters
Language

4. Programming Languages for expressing, developing and writing application functions

Language

5. Geometry Langusges, [acility , library and utilities for modelling geometry of parts,
Engine family ofdesigns and defining topology

6. Data and Languages, facilities, Library end utilities for managing information, sending
Memory messages, changing files, records and objects
Management

7. Interface Chaining a set of instructions to infer results or an outcome of an event
Engine (values of an attribute)

8. Communicationd Communication protocols facilities, library and utilities for communication

and Network amongst heterogenous hiw & s/w environoments
9, Standards Introduction of standardized neutral forms, languages and interchange
formats

FIGURE 10 A generic CE developmental environment (nine-laver configuration).

* User interfuce. The uscr inteiface (UD) is often considesed the “window o the
world”—an external mechanism whereby a team or a work-group can execute
system functions and graphically view the results. The common interface struc-
ture allows the team members to move from one compuler application tool lo
anothier, with minimal learning. The same look and feel aspect of Ul allows the
teamns to concentrate on the tool and not on the interface. A simple example of
Ul is the pull-down menu in any window-based environment. The current
emerging standard appears lo be some variation of the X-Windows graphic
windowing system with OSF/MOTIF librarics.

Concurrent Engineering and Work-Group Computing 82

Command language. This enables team members to issue interactive commands
wilh programmatic modification capabilities in object-oriented setting. The def-
inition and interpretation of computational framework are done with the help
of a command language. Using the command language, one can execute se-
quences of functions provided by an application. The Macintosh Hypercard
language Hypertalk is a representative of this class of languages.

High-level application languages. As application languages evolve further, pro-
gramming languages support more English-like syntax. At the 4GL level, one
mercly tells the application what is to be done, and the program automatically
figurcs out how to do it. The term 4GL encompasses not only the particular
programiming languages but also the cntirc sct of software-developiment tools
that are associaled with these languages. Such tools include the Tollowing:

Debuggers

Text database editors
Application and menu generators
Forms and report writers

Screen layout

Presentation systems

Data manipulation languages
Data dictionary

Programming language. This inclodes the language and compiler (usually) for
defining the functions needed by the application. Although FORTRAN is still
a popular langnage in engineering design, C language is dominating many new
applications and C++ object-oriented exlension to C appears to be the choice
of many electronic CAD system vendors. :
Geometry engine. The geometry engine has five principal elements: 3D wire-
frame, constructive solid modeling, 3D solids, rendering and scientific visual-
ization, and interactive photorealistic rendering (see Figure 7.7 of Ref. 2). Solid
modeling provides 4 more natural understanding of proposed designs and
makes it casier to discover the relationships among systems, struclures, materi-
als, and processes. Moreover, a solid model offers an unambiguous definition of
geometry and topology, simplifics computation of physical propertics, cnables
detection of interference, and supports determination of dimensions and toler-
ances,

Associativity belps to create 2D drawings from 3D solid models. Essentially,
2D views are taken off a 3D solid model and automatcally placed in a 2D
drawing. Small changes in the 3D model can be automatically reflected in a
2D drawing. A common math-based representation for solids can communicate
scamlessly between various modules. For instance, a unified solid modeler can
communicate with modules for production drafting, 3D modeling (including
wireframe, surface, and solid modeling), FEA, and NC prograrnming.

Data and memory management. This includes utilities and libraries for manag-
ing collections of objects, files, and records in memory, for use by the applica-
tion languages, or on permanent storage (disk). It can add functions, such as
predrawn symbols, for other CAD/CAM packages. Relational databases have
been standardized by ANSIL Object-oriented disk databases (the disk-based
equivalent of the memory management systems mentioned in Fig. 1b) com-

a0 Concurrent Engineering and Work-Group Computing

bined with jonic desktop user interfaces seem to be the most likely technique
for management of files in the future. A number of new database products are
emerging and existing relational database vendors are extending their products
with ohject-orienled facilities such as clustering and rules. However, an carly
resolution i this area scems unlikely.

Gaining in popularily arc object-oriented database extensions of memory ob-
Ject managers of languages like CH++. Soon, system vendors may provide lan-
guage-independent object management systems and shared access to common
object pools by independent applications. Some sort of run-time object manager
will also be required because most existing object managers do not save enough
class information for run-time dynamic objects. Object-oriented databases such
as ROSE (7) can provide such layers. Because of considerable technical com-
plexity, the development of stundards in this area wil) take some time.

* Inference engine. Inference engine allows tcams to deline rules for capturing
design intent and processing it in a “demand-driven” mode. Conventional artifi-
cial intelligence {Al) tools emphasize symbolic processing and nonalgorithmic
inferences. In order for the resulting distributed intelligent environment to be
powerful, it is imperalive that the inference engine has abilities to conduct both
heuristic and algorithmic reasoning.

« Communicalions and networks. It must facilitate information sharing and en
able organizations to coordinate their teams' activities and resources. The idea
of an enterprise integration network is to provide electronic exchange of infor-
mation and services both internally among work-groups. teams, and depart-
ments of a company, and exlernally with customers, supplicrs, and strategic
partners. It must provide electronic access of information to the CE teams of
echnology, standards, methodology, and 3Ps. Teams shoufd find meeting on
the network uscful to collaboratively puide and develop the necessary product
ideas aimed toward a plobal product realization strategy.

¢ Standards. Defining common semantics and schema for the ohjects are dilficult
propositions, With a number of viable options emerging, such as the PDES/
Express language, some standardization in this area seems likely in the next
few years.

A CE developmental environment must permit any application tool to access any
product data in the PIM and process it at a workstation—whether or not any of these
clements are inherently compatible. This is the underlying role of the CA framework: A
tool can be modified or updated any number of times, or replaced with a similar tool
from another venrdor, and 3 must still function without gpecial preparation or custom
programming. It must support standard protocots (e.g., DDL Tor windows that will make
them “plug compatible™), allowing teams to request information and services from one
another. The possible examples tools for various layers of this developmental eaviron-
moent are shown in Figure 11,

Models of Computational Architecture

In the last few years, many models of computational architecture have emerged. Each
defines o consistenl interface that has the same “Jook and feel” for all applications, thus
allowing CE work-group members 1o devote their creativity to perform PD’ functions
rather than leacning the infrastructure. An overview of an approach, which meets these

Concurrent Engineering and Work-Group Computing 9i

—

ASCIH X-Windows | OSFMotif Presentation User Intecface
Terminsls Open Look Menucs Manager P
‘ S
ADS | EISI | ICAD| ANSI| HYPER | Case | UNIX ’C"’""“"‘
Cycle | EAL | DL | DDL} TALK | Tools| Shelt “"'e"/”“///
Applicatlon
MISC |4 GL | SOL Editor | Application | UG/GRIP Lenguage
DMAP Library
b Programming
Objective
LISP | C | Forran | COBOL| C++ ¢ ADA Languoge -

Solids, Surfaces | prics | parasolid | ICAD| UG |GEOMOD| Geomety Engine

Lines & Points Concept /

Ob'Jccl T Configaratio I_zala and Melmory
Oriented | ppGRESS |ORACLE | RDMS| Rdb | Control anagemen
Database ROSE .

DUPS Data Dictiohary/Apphcation Knowledge-base I Engl
Object- Demand Driven nference Engine
Oriented

Communlcatlon

LavWan d
TCPAP |Net BIOS |DECNet| SPXAPX| OS! |pycg and Nebwork

IGES | PDES | MAP| TOP| ICAM| CAMI| IDEF| DOSUMIX cdards
STEP

FIGURE 11 Possible example tools for a CE developmental environment.

cons(raints, is proposed by Lewis (B). The basic idea 1s to implement most product-
development methods, tools, and advisors as independent servers or libraries. User inter-
face or dala management calls are not included as part of these libraries. The work-
groups and data interfaces are implemented through a collection of open environments
based on one or two application frameworks described earlier. Consequently, individual
applications will nat require exiensive modifications for inlegration into the rest of the
open environments. Applications are thus insulated from changes in the frameworks,
other included applications, or the user interface. Some significant examples of computa-
tional archilectures developed for CE are CASE (9), DICE (10), Design Fusion (11) and
Nexi-Cut (12). They are discussed in the appropriate references cited.

CE SUBARCHITECTURE OR A FRAMEWORK

The goal of a framework for CE is to provide a flexible application development environ-
ment that shields end-user applications from possible downstream changes. The CE
framework is organized into a three-layered system. Figure 12 shows a logical view of

92 Concurrent Engineering and Work-Growp Computing

EXD-USER
APPLICATIONS ‘
et Y v . Ar
I . : Vo 8
ommon Siandard] '»J?’; gz,
h:i'ifd Languages . p e i
A - A N Visual Tools
Y
e o D o
INTERFACE l
¥ Workbench
Cluss/Function
Strategic General Applicalion Libravlex
C4 System Tools Enablers Browsssication Browser
- // - Madule Browser
e Y « Entity Browser
- Class Browser
~ Error Browser
Core Enablers
(Object Engine, Rules Engine, Data Acress Engine) -ch“z;;il’o—ry
Systerm Enablers B LT -
‘COM"(‘;TE (O/5, Languages, Standards) Integrated {,1) - cj
LATPORM ata Bas
PLATPOR Hardware Plstform EWS Hardware Dsta Baye { """
(EWS, Networks, Stasdards)

FIGURE 12 A logical framework for CE.

this CE subarchitecture, which forms the basis for the Rlexible CE environment described
in this article. The lowest layer is the computing platform. The sccond-layer—-intetligent
mterface—provides the primary programming interface to application developers. The
top layer consists of end-user applications communicating among themselves (horizon-
tally) and to the intelligent interface (vertically):

flCompu!e Platform €D Intelligent Interface]
* AStandards = Long Life of End-User Applications. 8]

When computing platforms with intelligent interface are integrated over the appli-
cable standards, this results in a long life of the end-user applications developed on the
top.

Computing Platform

This is the bottom layer of a CE subarchitecture. It consists of actual hardware platform
[such as engineering workstations (EWS), networks, and standards], system cnablers
{(such as operating system, languages, and standards), and core enablers. The core en-
ablers are the core lools that enable transparent access 1o database and other system
cnablers. Core enablers have three enpines:

Concurrent Engineering and Work-Group Computing 93

Object engine. This is used for managing objects supporting complex hierarchies
of objects arranged into classes, subclasses, and instances.

Rule engine. Because different engineering, manufacturing, or business problems
require different kinds of reasoning. a versatile rule engine is required that gives
the work-group members a choice of various rule-based reasoning technigues:

« Forward chaining for data-driven reasoning
¢ Backward chaining for diagnostic-style reasoning
s Backtracking for intelligent searching and the management of iteration
and looping
Duata access engine. For mapping data from a relational database onto objects.

Intelligent Interface .

This layer consists of strategic C4 (CAD/CAM/CAE/CIM) system, general tools, an
application enablers (see Fig. 12). The application enablers create and foster the adoption
of a base set of enabling features, functions, and interfaces (called engines). The enabling
base provides an environment for building applications utilizing the engines. The intelli-
gent interface layer includes the following:

Strategic C4 system. This is a set of C4 utilities—a set of graphical end-user inter-
face construction facilities. It is employed to construct a common knowledge-
base model, The common knowledge-base model is 4 common part/feature-
based model. This enables a view of the design that i1s common across all CE
disciplines.

General tools. Interactive C or C++ environment facilitates development of object-
oriented (C or C++) source codes.

Application enablers. This is a developer interface for developing object bases,
rule sets, and database mapping in a graphical environment. Examples include
workbench, class/[unction libraries, browsers, and so forth. Browsers, for exam-
ple, can further be broken down as application browser, module browser, entity
browser, class browser, and error browser. Application enablers can be used to
build model drivers. Examples of model drivers are equation solvers, optimiza-
tion tools, and visualization tools

The intelligent interface contains import/export facilities, common programming
standards, and high-level language processors. High-level languages help in capturing
business decision-making processes. Examples of such processes may include visual
tools, code generators (CASE tools), and a code debugger. Business logic, navigation,
and databasc operations are triggered by visual control. The application language com-
bines rule, analysis, and procedure-based descriplions, along with sophisticated patiern-
matching capability. The application language is tightly integrated with the intelligent
interface system. Access to the common knowledge-base model is achieved through the
application language that aflows the work-group members to query the model in their
own terms. The application language can be used in conjunction with, or even as an
alternative to, the C++ language to write procedures for object system methods and
monitors, ruleg, or even a command language. The langnage itsell may he either interpre-
ted or compiled in a single phase during development, thus providing one language, with
a single syntax, for a variety of uses.

An intelligent interface with high-level language provides a full application pro-

94 Concurrent Engineering and Work-Group Computing

gramming interface (API) to the various engines. This allows an application developer
to function in any role within a broader application architecture, including back-end
server, inteligent front end, and nm-time library.

END-USER APPLICATIONS

The top layer contains the production-user interface that integrates all the functional
layers into the so-called end-user applications. This layer is equipped with a knowledge-
base library. While building end-user applications, the knowledge base and libsary func-
tions can be called directly from command language expressions. The language compiler
manages the passing of bindings, whether to the C4++ library or to other knowledge
library functions. High-tevel Ianguage, along with the facility for graphical construction,
can be used to depict the status of important events or actions. With interactive graphics,
the work-group users can see and divectly mianipulate images represenfing their business
operations and decisions.

CONCLUDING REMARKS

This article deseribed a distributed environment and a Jogical framewark for performing,
concurrent engineering, Crealing a three-layer logical framework for concurrent engi-
neering has the following benefits:

» Interoperability. It provides the applications better interoperability in a multi-
vendor environment.

¢ Protecting investments. [t shields the investments in applications from being
lost due to downstrean variations in platform hardware and soltware configura-
tions, such as the “winning brand name or stundard ol the month.”

s No danger of obsolescence. It prevents the applications thal are developed to-
day from becoming the “legacy”™ of lomorrow.

e Intelligent interface layer. 1t atlows guick generation of the applications, be-
couse development kits. or utilities are placed vn the common service layer
(intelligent interface layer) separated {rom the computing platform and shared
across multiple applications.

o lLess progranuming, W insulates the application developer from platform and
network variations.

REFERENCES

1 NS Margolias and M H._ O Cannell. “Part 3—Implementation of a Concurrent Engineering
Architecture,” in WESTEC'90, March 1990, Paper No, MS90-205.

2. B. Prasad, Concurrent Enginecring Fundamenials: Integrated Product and Process Organi-
zation. Volwne 1. Prentice-Hall PTR. Inc., Upper Saddle River, NJ, 1996,

3. Pennell and Slusarcawk 1989.
B. Prasad, Concurrent Enginecring Findamentals: hitegrated Product Development, Volume
2. Prentice-Hall PTR, Inc., Upper Saddle River, NJ, 1997,

5. U.S. Air Force. ICAM Praject Reports, Air Force Wright Patterson Laboratory (AFWAL),
Dayton. OH, [982.

Concurrent Engineering and Work-Group Computing 95

6. R.W. Yeomans, A. Choudry, and P. 1. W. Ten Hagen (eds.), Design Rules for a CIM Sysrem,
North-Holland, Elsevier Science, Amsterdam, 1985.

7. M, Uardwick, et al,, “ROSE: A Database System for Concumrent Engineering Applications,”
in Proceedings of the Second National Symposium on Concurrent Engineering. Concurrent
Bingincering Rescarch Center, Morgantown, WV_ 1990, pp. 33-63,

8. 1. W. Lewis, "An Approach to Applications Integration for Concumrenmt Engineering,” in Pro-
ceedings of the Second National Symposiun: on Concurrent Engineering, Concurrent Engi-
neering Rescarch Center, Morgantown, WV, 1990, pp. 141-154.

9. M. Sapossack, S. Talukdar, A. Eifes, S. Sedas, M. Eisenberger, and L. Hou, “Design Crities
in the Computer-Aided Simultancous Engineering (CASE) Project,” in Concurrent Product
and Process Desipn, Chao and Lu (eds), ASME, New York, 1989, pp. 137-141; Proceed-
ings of the Winter Anaual Meeting of the American Society of Mechanical Engineers (ASME),
December (989,

10. DICE Initiative in Concurrent Engineering-DARPA, “Red Book of Functional Specifications
for the DICE Architecture,” Technical Report, Concurrent Engineering Research Center,
West Virginia University, Morgastown, WV (February 1989).

{1. D. Navinchandra, M. S. Fox, and E. S. Garduer, “Constraint Management in Design Fusion,”
in Concurrent Engineering: Methodology & Applications, P. Gu and A, Kusiak (eds), Elsev-
wer Science. Amsterdam, 1993 pp. 1-30,

12. M. R. Cutkosky and J. M. Tenebavm, “Providing Computational Support for Cencurreni
Engineering Int. J. Svst. Autom.: Res. Applic., 1(3). 239261 (1991).

BIBLIOGRAPHY

). Turino, Managing Concurrent Engineering, Van Nostrand Reinhold, New York, 1992.

U.S. Deparlment of Defense, Draft Military Standard {or Systems Engineering, MI1L-STD-499B,
Dyafi, 1002,

k. 1. Winner. J. P. Pennchl, H. E. Bertrend, and M. M. G. Slusarczok, “The Role of Concurrent
Engineering in Weapon Sysiems Acquisition,” IDA Report R-338, Insiitute for Defense
Analysis, Alexandria, VA, December 1988,

5. G. Shin. “Concurrent Enpineering and Design for Manufacture of Electronic Producis,” Van
Nuostrant Reinbold, New York, 1991,

S. Pinger, “Concurrent Engincering,” Presentation Materials, ICED '93, The Hague. August, 1993

K. J. Clectus, “Definition of Concurrent Engineering,” CERC Technical Report Series, Rescarch
Noles, CERC-TR-RN-92-003, Coneurrent Engineering Research Center, West Virginia Uni-
versity, Muorgantown, pp. 1-5, 1992,

DL, Carter and 3, 8. Baker, Concurrent, ‘The Praduct Development Eavironment for the 1000s,
Addison-Wesley Publishing Company, Reading, MA, 1992.

J. Pennell and M. Slasarczuk, “An Annotated Reading List for Concurrent Engineering,” Technical
Report HQ 9-034130. Institwte for Defense Analyses. Alexandria, VA, 1989.

SUBRA GANESAN
BIREN PRASAD

