
Proceedings of IDETC/CIE 2005
ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference

September 24-28, 2005, Long Beach, California, USA
DETC2005-85561

A KNOWLEDGE-BASED SYSTEM ENGINEERING PROCESS FOR

OBTAINING ENGINEERING DESIGN SOLUTIONS

Brian Prasad and Jeff Rogers
Control Systems Division, Parker Aerospace, Parker Hannifin Corporation,

14300 Alton Parkway, Irvine, CA 92618-1898 USA
bprasad@parker.com; jrogers@parker.com

ABSTRACT
Designing and developing highly engineered products requires
direct (and more dynamic) associations between customers’
specifications and product characteristics (or its behaviors). In
order to meet the specified customer performance, cost, and
integrity goals, a multitude of specialized analyses, heuristics,
shortcuts, look-up tables, equations, algorithms, finite
elements, and material substitution at multiple levels (system,
subsystems, components and parts) are ought to be performed.
The product geometries of such engineered product are often
complex and many parts are designed interactively from
scratch using a 3D commercial computer-aided design (CAD)
-- lately often referred as Product Life-cycle Management
(PLM) system. Today, this very “PLM-based” engineered
product-design process is often “static”, very “feature or
geometry-dependent,” “knowledge-intensive,” and therefore,
engineers often takes considerable time (months) to complete
this manual process.

Today, more and more companies want to quickly reengineer
a product from a multitude of family solutions (corresponding
to various design trade-off studies). They are interested in
some dynamic form of a decision-based system that could
automatically filter through a multitude of historical product
solutions and quickly reconfigure one that meets the customer
requirements with the least cost, weight, and time investment.
Such decision-based product automation is not an easy task by
any means. Product definitions without knowing specific
geometry are hard to conceive, capture generically, and reuse
widely (via any generative tool). A typical product
development process —by its nature—is highly dynamic,
nonlinear, discrete, feature-dependent, and part-
dependent. The solution is not easy, since problem
formulation is time-bound, has numerous discrete inputs,
topologies, and several mathematical discontinuities.

This paper discusses the system architecture of the
Knowledge-driven Automation (KDA) program -- established
at Parker in 2002. It addresses many of the above product
development issues and problems. In particular, authors
describe a Knowledge-based System Engineering Process for
Obtaining Engineering Design Solutions in a Commercial
PLM Setting. The architecture and solutions use a number of
innovative knowledge-based engineering (KBE) concepts and
procedures. Through strategic use of generative modeling,

spreadsheet tables, part and assembly templates, system
engineering concepts, and our proprietary “smart part
concepts,” authors were able to engineer-to-configure a
family of hydraulic actuators automatically from their
customer specifications using a set of PLM (CATIA V5 and
its underlying knowledgeware) tools.

1.0 INTRODUCTION
Conventional product design and development practice in
PLM often concentrates solely on constructing “end-use”
descriptions of the product-- often called layout or detailed
designs. Most layout descriptions fall in two categories:
concept descriptions and math-based descriptions. Examples
of concept descriptions are a concept paper, a product
schematic sketch, a blueprint or drawing, and/or a physical
model (mock-up). Many of virtual or math-based descriptions,
in the layout stage, are explicit representations of geometry in
either “flat files” (such as CAD file/2D parts geometry) or in
“digitized 2D/3D form” (such as in popular CAD entities:
arcs, lines, surfaces, etc.) In the preliminary stages of layout
design, some of the tangible deliverables are: functional
decomposition, device models, back of the envelope
calculations, detailed or fixed dimensional geometry and
drawings. This is shown by the shaded blocks in Figure 1.
When a layout is “locked-in” in digitized forms, it is easy to
create tool-path or NC data, post processing data (machine
inspection) and prototype machining (streolithography), etc. It
is also easy to create downstream results, such as bill-of-
materials (BOM), process plan, products manual, users
manual, service plan, etc. (see Figure 1. Some of the
intermediate deliverables at this stage include: design,
manufacturing specifications, tooling specifications, and even
physical prototypes. These deliverables are for the “locked-in”
form of CAD data (static form). This is because text and point
data in CAD present no problem if the “original intent” of the
design is not altered. However, via fixed-dimension modes, it
is very difficult to transfer or reformat the intent of an
engineering design to any other form or object. Intermediate
deliverables are not the end product of the design process.
Using a symbolic representation or a variable dimensional
(parametric) mode, one can generate these intermediate
deliverables easily for a variety of new or altered situations.
Parametric and knowledge based CAD representations are

 Copyright © 2005 by ASME

examples of such techniques that are based on capturing
design intent not just capturing the results of CAD
documentation.

It is also generally said that 70% of the product cost is “com-
mitted” or “locked-in” after the layout design is complete.
This presents three dilemmas:

• First, layout designs (locked-in a fixed-digitized form) are
not flexible, so engineers are unable to incrementally
modify them as they move into other iterative life-cycle
analysis phases.

• Second, even if such flexibility exists, no matter how
many engineers would try, the expected gain will only be
a fraction of the remaining 30%. The reason for this is
because 70% of the designs were already frozen or
committed at this point.

• Third, even if description of the design process at this late
stage is captured parametrically or through similar means
(of representing design rationale) it will not be of much
use since most communications in the current process are
carried out in explicit forms (such as blueprint or
drawings, CAD geometry, etc., as explained above and in
Figure 1).

Figure 1: List of typical deliverables in a
conventional design & development process

Knowledge-based product data management (PDM) and
knowledge-based product lifecycle management (PLM) tools
are emerging today as viable means to capture the best
practices, analyses, sizing principles, and methods and
communicate them across the various life-cycle functions of
product development.

While designing an artifact, teams often forget that the product
is a system. Products consist of subassemblies each fulfilling a
different but distinct function. A subassembly is a group of
two or more units that can be brought together (say for
instance, shared axes or fit together). Relation information
connects subassemblies, processes, design methods, and/or
physical features. Subassembly information includes
components, parts, and features (materials, attributes,
parameters, and geometry) as well as other sub-systems.
Process information includes assembly or manufacturing
considerations such as joining faces, aligning bolts, common
axes, welding lines, etc. Design methods include parts layout,
design rules, analysis methods, packaging schemes,
dimensional tolerance, material substitution, and form options.
A feature is a representation of form, relevance, and intent to
some aspect of part design of interest to either functionality
(part features or so called form features) or manufacturability
(e.g., DFX) [Nielsen, 1990]. Form signifies the attributes of
the features present, their connectivity (topology) and
geometry. Relevancy points the reason a feature is included in
the design (e.g., issues related to functionality or DFX rules).
Intent represents the imposed constraints by the concurrent
engineering (CE) teams on the freedom of the parts’ function
or rules associated with a DFX principle. In order to achieve a
truly integrated product and process design (IPPD), all the
above needs have to be considered simultaneously. The core
concept of IPPD is the system definition. Consider what Szucs
[1980, pp. 42] stated: The term system is used to denote an
object composed of certain elements that are linked by well-
defined (but not necessarily known) relationships. It is stipu-
lated that the system may interact with its environment
(receive external stimuli) and that its behavior comprises
responses that are useful or profitable to the operator. Objects
completely isolated from their environment (completely closed
system) and phenomena that cannot be influenced by person
are not regarded as systems in the technological sense.

2.0 SYSTEM CONSTITUENTS
Before we take a close look at the requirements of a full IPPD
system, let us review what constitutes a system. Truly, a
system has three parts:

(a) Class Hierarchy (a structure definition): Class hierarchy
is a very efficient mechanism for system definition
because one can use method and variable definitions in
more than one subclass (such as sub-systems,
components, etc.) without duplicating their definitions.
For example, consider a system that represents various
kinds of human operated vehicles (See Figure 2). This
system would contain a generic class for vehicles, with
subclasses for all the specialized types. Five major
subclasses might include: auto, truck, bus, aircraft and
land transport devices. The generic vehicle class would
contain the methods and variables that were pertinent to
all vehicle features, such as identification numbers,
passenger loads, fuel capacity, etc. The subclasses, in
turn, would contain any additional methods and variables

 Copyright © 2005 by ASME

that were specific to the specialized cases [Taylor, 1993].
Truck may consist of pick-up, van, and a tractor-trailer.
Land transport devices may include subclasses such as
motorcycles, bicycles, skateboards and unicycles.

 {Motorcycles }

{Bicycles}

{Train} ∈ [Land transport devices]

{Tram}

 Where ∈ denotes an element of a set or member of the
class hierarchy.

(b) Integration Hierarchy (an assembly definition):

 [Land transport devices] ⊃ {Motocycles, Bicycles,

Train,…, Tram}
 Where ⊃ denotes “is a member of super class set.” The

elements in the curly bracket are its member classes.

(c) Constancy-of-specifications, requirements, purpose or

goals: This identifies the key product functions,
requirements or constraints (RCs) of the product system,
some of them are also common to its elements (product
sub-classes). For example, general system-level RCs must
gives rise to component (e.g., a department unit) level
RCs. Constancy means carrying the same definition and
the same sets of requirements hierarchy and management
process throughout a product development process.
Integrated product definition (IPD) teams must agree on a
common set of engineering requirements that relate to the
company’s (high-level product development) goals and
customer needs. Constancy of RCs also provides a
common set of ground rules for mutual cooperation and
communication throughout the product development
community. If a product development process is “left to
themselves in the Western world, components become
selfish, competitive, independent profit centers [Deming,
1993].”

RCs parts ∃ RCs components ∃ RCs subsystems ∃ RCs system

∃ RCs department ∃ RCs SBUs ∃ RCs enterprise

where, ∃ denotes an element of.

Figure 2: Class of human operated vehicles
Having a definition of what constitutes a system is the first
step toward being able to manage an IPPD system. However, a
product-breakdown structure or its definition alone is not
enough. The design of a typical automobile, aircraft,
helicopter or computer involves thousands of engineers
making millions of design decisions over several years. Class
hierarchy was one of the key elements of organizing a
complex product as described by Prasad [Chapter 8, pp. 380-
387]. Decomposing the product realization process into class
hierarchy of discrete activities is another essential element of
IPPD.

3.0 SYSTEM LEVEL
ORGANIZATION OF INTEGRATED
PRODUCT & PROCESS
DEVELOPMENT
An important distinction in applying knowledge-based
engineering to IPPD is to recognize that the artifact being
designed is an assembly or a system (i.e., something which is
composed of a hierarchy of sub-systems, components, parts,
and templates). Templates form the lowest level of inputs for
reconstructing the system. A number of reusable templates
could define a generic part. A system level organization of
product development activities is shown in Figure 3.

 Copyright © 2005 by ASME

Figure 3: A system level organization of integrated
product and process development activity

Organization of an IPPD process plays an important role in
ensuring the effectiveness of the resulting production system.
Organization of IPPD can be approached by carefully splitting
the system-level problem into its mutually separable
transformation states, followed by modeling of each state, then
the reconstruction of a system definition from the aggregate
definitions of its constituent states [see Prasad, 1977].

As shown in Figure 3, functional description of a product
realization process thru IPPD consists of three major
components:

• System Decompositions: During system decompositions,
systems are broken into subsystems, subsystems into
components, components into parts. Finally the parts are
expressed in terms of base templates. The templates, in
turn, consist of both geometric and non-geometric set of
features and parameters. There arc many ways a product
can be decomposed. In the Figure above, 5 levels of
decomposition are shown. Level 0 is finished product
solution. Level 5 represents specifications, BOPs, BOMs,
etc. The number of levels depends upon the complexity of
the problems and the desired aggregation schema used.

• Part Solutions: One key aspect of product realization is

to recognize that a “part” can be made out of multiple
templates. The solution for each template-based construct
is sought concurrently having shared specifications being
part of a global set of specifications stored at the system
level. During solution iterations attempts are made to
satisfy the various part-template goals. Normally, during a
single pass of an “all” parts solution, only a portion of
each part’s goals are satisfied. The part’s goals which are
not met are passed onto the system’s level goals. The
design then enters into a system reconstruction loop.

• System Reconstruction: During system reconstruction,

parts are assembled, inter-part constraints are applied, and
its system performance is measured. Value engineering
and continuous process improvement are considered part
of this validation. If no improvement is desired, the
artifact system is converged; otherwise, necessary
improvements are incorporated through a secondary
redesign bypass loop.

4.0 PRODUCT SYSTEM
DECOMPOSITION
Product decomposition means viewing the product realization
process as a part of the whole and then overlapping
(aggregating) the decomposed sets to recreate or reconstruct
the whole system from its constituent parts. In other words:

Product Realization ⇔ [Decomposing (parts-from-
the-whole) ⊕ Reconstructing (whole-from-the-parts)]

The term “whole” also includes multiple characteristics of
life-cycle concerns (e.g., X-ability) that we may need to
consider. Many products can be decomposed safely into sets
or class hierarchy. However, not all such decomposed sets of
life-cycle activities in a product exhibits independence.

Smith and Browne [1993] describe decomposition as a
fundamental approach to handling complexity in engineering
design. The two (decomposition + concurrency) allows one to
identify activities that can be overlapped or performed
simultaneously. It also allows one to formulate strategies
leading to their separation, e.g., indexing, alternate
decomposition, teaming, or restructuring. In good product
decomposition, the decomposed class hierarchy is described in
such a way that their interfaces are eliminated or minimized.

Attributes that are essential for successful product realization
outcomes are:

• Minimize Interfaces: This entails reducing all sorts of

interfaces required for both decomposition and
reconstruction parts of the “Product Realization Process”
to a minimum.

Number-of Pinterfaces ⇒ Minimum

These include the interface relationship between
management and design, supplier interface, design
development interface, design to assembly interface,
design to manufacturing interface, production interface,
etc. Such interfaces can be very long indeed and tend to
depend upon the size of the company and the product and
process complexity.

Do all the decomposed parts exhibit independent or semi-
independent characteristics? Due to increased global
pressure to bring a product early into the marketplace,

 Copyright © 2005 by ASME

parallel processing in CE is becoming a necessity. There
are, however, many ways a product, process or work
information can be decomposed and overlaid in parallel.
If a product, process or work information activity does not
affect other parameters or processes, it can be performed
locally. If it does, it can be performed in a distributed
fashion by the IPPD team. Local or distributed
processing, to a large extent, depends on how a product
structure is originally broken up or decomposed.
Wherever there is a dependency, a dependent portion (for
instance a part or a process) should not be designed in
isolation from the rest of the product or process. This is
derived from the proposition that if a component is sub-
optimized in isolation from the rest, the whole may not be
fully optimized. Good decomposition allows the
scheduling of activities to proceed in parallel. For
example, it is not necessary to delay the start of an
activity if the information required for a decomposed
activity is not dependent on the rest.

• Quick Processing: means performing individual activities
as fast as possible using knowledge-based productivity
tools, lean process reengineering tools, design aids or
knowledge-based engineering techniques. It also amounts
to speeding up the preparation time in building up the
information content before and after an execution of a
task. This emphasizes the mandate for shortening the pre-
and post-processing time and the time it takes for
completing the decomposed tasks themselves.

Quick Processing ⇔ Minimize Lead-time-of
Ptask-i for I=1, n

Where, n is the number of tasks in the P-set.

• Virtual Communication: This provides transparent
communication among the individual activities that are
partitioned (decomposed).

Tasks Pcommunication ⇒ Transparent

There is a difference between the complexity of the
philosophies (such as product complexity, process complexity,
enterprise complexity, and the philosophies of their virtual
communications. An organization committed to making such
complex products in the shortest possible time need pay equal
attentions to providing virtual communication among the
individual activities that are decomposed. This amounts to
using inter-part and intra-part communication techniques that
are method-dependent but part-independent.

Through a knowledge-based approach, engineers optimize the
artifact simultaneously with the aid of knowledge and
experience acquired from the experts. Engineers acquire the
product and process knowledge and then use the power of
intelligent multi-template systems to guide decision making.
[Prasad, 1977]. In the decomposition schema introduced in
this paper, a two level decomposition (Level 1 and Level 2) is

used. The Actuator System Solution represents Level 1.
SmartPart definition, described next, represents Level-2
decomposition.

5.0 DEFINITION OF A SMART PART
When a team develops a part, it specifies three types of
information: inputs to a given baseline system, certain
behaviors required from the existing system, and changes or
restrictions on the future behaviors of the system. In this
definition, they are characterized as inputs, requirements, and
constraints, respectively.

Inputs: Inputs are everything needed to carry out an IPPD
process or a function.

Inputs { Ii } include data { Di }, knowledge { Ki }, and
process { Pi } at state i.

Inputs = Function-of (Data, Knowledge and Process)

or Ii ≡ ƒ [{ Di }, { Ki }, { Pi }]
Inputs at an intermediate state assume the values of the
previous state inputs during transformation. Initial data is
usually derived from environmental conditions, customer
requirements, or voice of the customer. Data may also be
present as capital investments, people, money, materials or
equipment. Another element of input is the process Pi at state
i. The process includes teams, skill, and leadership, as well as
the state of domain, infrastructure, tools, organization,
information, communications, technology, and other business
processes. Ki is the product or process knowledge including
scientific, technological, empirical, statutory, social, cultural,
or environmental aspects.

Requirements: These are defined as “necessary” statements of
the characteristics of a domain object that are required (Ri) to
describe the domain, its features, or its multiple behaviors.
Requirements may take the form of industry standards,
materials characteristics, aesthetic considerations, human
factors, safety, ergonomics, regulatory, ecological or
environmental conditions among others.

Constraints: Constraints are the restrictions on the inputs and
the requirements. Constraints Ci, at state i, restrict the
behaviors of the domain object to function in a particular or
specific way. Collectively, the constraints define what will be
an acceptable outcome. The restrictions range from social,
political, economic, technological, ecological, legal to random
behaviors. The simplest form of constraint would be like
assigning a value to a form or function feature. In the context
of engineering design, a constraint can be thought of as a
required relationship among design attributes and features.

The above framework items are collectively called herein a
system specification set { SSi }:

 { SSi } ≡ ∪ [{Ii }, { Ri }, { Ci }]

 Copyright © 2005 by ASME

To understand “IPPD process” definitions, it is useful to start
with a definition of a “SmartPart” model. A SmartPart
definition is shown in Figure 4 using a three-template schema:
specifications, sizing, and geometry. [Prasad, 1977].

• Specification Template: The specification template
captures both inputs and requirements for design. All
attributes related to specification inputs, like materials
data, fatigue life computation knowledge and specific
processes for a particular part family are captured via
knowledge rules and instructions. It contains no
geometry.

Figure 4: Definition of a SmartPart and how it is
reused to create intelligent part families

• Sizing Template: The sizing template capture the

analytical basis of design and thus provide the constraints
for the problem definitions. It serves as a modifier for the
initial system specifications block. All inputs and
knowledge related to sizing of the part and a decision-
making process for making a trade-off against the
captured constraints are modeled using knowledge rules
and instructions. It also contains no geometry.

• Geometry Template: The geometry template is a feature-

based representation of the design intent. It takes the
inputs from both specification and sizing templates and
forms geometric definitions from those abstract
specifications. This is commonly achieved using a
CAD/CAM or PLM environment.

Such a three-template schema is interrelated, by design. It is
effectively used to capture and define the artifact’s intent
according to the perceived customer needs. Using this
approach, the SmartPart model broadly defines the constraint
boundaries, overall requirements of the product design,
problem resolution definition, and life-cycle intent.

One of the most important steps in IPPD is the creation of a
detailed taxonomy of the “product solution process” [Prasad,
1977]. Taxonomy allows concurrent realization of an artifact
in an orderly fashion. The three-template schema (altogether
called herein as SmartPart) serves as the set of reconfigurable
building blocks for this taxonomy. Using the three-component
construct, authors were able to transform the system specifica-
tions (inputs, requirements, and constraints) into a solution
output (in the form of a physical artifact). The sizing template
(a component of the SmartPart) serves a very useful purpose
since it embodies a basis of comparison of prediction with
measurements.

First, a SmartPart template captures the system’s behavior in
some form of abstraction or formalism. Second, to use this
formalism, it transforms some crude description of the parts’
desired behavior (called system specifications) into a customer
requirements and finally into a physical description. Let us
assume that the IPPD System problem at hand consists of “M”
SmartParts. Figure 4 shows a mapping of the functional
description of the product and all of its decomposed
components (SmartParts) through a series of transformations
leading to a physical description. The series exhibits a
precedence relationship among its transformed states. Each
state is governed by a set of SmartParts, which may be
executed in any random order. Each smart part is driven by a
set of specifications (via a specification template) and a set of
sizing constraints (via a sizing template), which in turn
produces a set of consistent geometry outputs (via a geometry
template). Let us also assume that convergence of the product
solution is achieved by repeating this transformation process
“n” time.

Let us assume further that
 [<P10 >, <P20>, <P30>, …, , <PXk>, …, <PM0>]

represents an activity plan for a set of SmartParts (X=1,
M) at the initial state of transformation (k=0).

Thus, at an intermediate (say ith iteration point),
[<P1i >, <P2i>, <P3i>, …, , <PXi>, …, <PMi>]
represents an activity plan for a set of SmartParts from X=1 to
X=M.

And [<P1n >, <P2n>, <P3n>, …, , <PXn>, …, <PMn>]

represents an activity plan for a set of SmartParts at the
conclusion of nth state of transformation.

Let us also assume,

 [{ S1i }, {S2i }, {S3i }, ...,, { SXi},…, { SMi }] denotes a set
of SmartPart specifications from X=1 thru X=M at a
transformation state i.

 Copyright © 2005 by ASME

The relations between the system Specifications { SSi’s },and
SmartPart functional specifications
Namely, [{ S1i }, {S2i }, {S3i }, …, , { SXi},…, { SMi }]
is expressed as

{ SSi’s } == U [{ S1i }, {S2i }, {S3i }, …, , { SXi},…,

 { SMi }]

Where U indicates Union of individual specifications. Each of
these templates is discussed next:

Figure 5: A transformation strategy for realizing a
product system solutions from its decomposed
SmartParts

5.1 Parts Specification Templates
A part’s specification template provides a mechanism to pass
the technical specifications from system-level tree to parts-
level tree. Technical specifications help identify both the
product’s functional intent as well as its parts’ characteristics.
Technical specifications are the equivalent of the customer
requirements that are stated in meaningful and quantifiable
terms. “Meaningful” implies they are understandable to
engineering communities; “quantifiable” indicates that they
can be measured in physical parameters like force, distance,
torque, acceleration, rates of change, and so forth. The
customer requirement for an engine that accelerates fast might
be translated into a technical requirement of “time it takes to
reach a speed of 100 miles per hour under specific condi-
tions.” The customer requirement for a door that opens easily
can be translated into technical requirements for “amount of
force required for a given push or rotation depending upon the
type of handles used.” Technical requirements can also be
established directly using the technical expertise of
experienced engineers. It can also be taken from product
acceptance standards if the work-group can intelligently
reflect the customer needs or expectations.

This specification template converts a set of system
requirements, SSs (such as those to fulfill the customer
requirements (CtRs) into a set of part requirements (PtRs).
Then development of the physical embodiment (enrichment of
data, process and knowledge) takes place first in the part
specification template and then in “sizing” and “geometry”
templates.

 [<PXi >; X=1, M] specs { <CtRsi >} { PtRsi }

5.2 Parts Sizing Template
A sizing template is made out of two types of Part’s
specifications: behavioral and physical.

• Behavioral: Those specifications that describe the desired
behavior of the overall system at an abstract level are
called behavioral specifications. Examples of behavioral
specifications include global behaviors, such as limits on
overall frequency, stiffness, etc. Note that strength is not a
system behavior because it is generally governed by
“local characteristics” such as presence of notch, crack,
etc.

• Physical: Physical specifications place physical
restrictions on the outputs, such as geometry, allowable
sizes and weights, amount of scraps, etc.

Representations of the behavioral inputs and physical
requirements must be linked to representations of their
physical characteristics, which dictate the constraints.
Constraints at different levels of abstraction guide the design
process. RCs are also used to maintain consistency and
propagate design decisions. The relationship may exist in an
explicit form, like an analytical form (such as design
equations.) A physical term, the weight of a helical coil spring,
for example, is analytically expressed as the product of
stiffness and the square of the allowable deflection, a
behavioral term. Other forms in which this relationship exists
are database entries, like a spreadsheet, or an implicit form,
such as a finite-element method (FEM) or CAD geometry
which relate geometric characteristics (such as weight) to
behavior characteristics (such as stiffness). CATIA V5
provides a number of techniques for capturing that knowledge
into equations and rules.

Here, a series of mapping for smart part sizing occurs
transforming the part-requirements (PtRs) as described by
Prasad [1977] into part-constraints, (PtCs):

 [<PXi >; X=1, M] sizing { <PtRsi >} { PtCsi }

5.3 Parts Geometric Template
Most of the activities in the product development cycle of
mechanical products are centered on generating and designing
geometric shapes that perform some specific functions.
Geometrical requirements may include generation of
geometry, topology, dimensions, and process tolerances.

 Copyright © 2005 by ASME

There are two types of functional requirements (FRs) that are
usually needed to model the product geometry adequately:
quantitative FRs and intent FRs. A complete design of a
product requires not only the FRs but also the geometric
configurations that realize the FRs. This views an assembly as
a hierarchy of standard class structures and uses a strategy of
known classes to devise a plan for the whole assembly. This
identifies a class hierarchy within each concept representation
(such as behavior or physical models). For example, instead of
viewing an assembly as a set of parts, one can view it as
composed of a set of class structures. Structure description
could be a class representing standardized relationships among
a set of parts. These descriptions typically form a class, which
is made out of other classes. For example, a door structure is
composed of a latch structure and two door hinge structures. A
door hinge structure is composed of a hinge pin structure and
two multiple screw plate structures. The multiple screw plate
would be composed of an odd number of simple screws and a
solid circular pin. The simple screw would be composed of a
variety of contact (seating and positioning) structures.

A series of mappings for part geometric template transforms
the part constraints (PtCs) into the physical geometry domain
(or the artifact itself).

 [<PXi >; X=1, M] geometric { <PtCsi >} { PtGsi }

Where, {PtRsi}, {PtCsi} and {PtGsi} represent the vector of
part requirements, part constraints and geometry requirements,
respectively.

The mapping process from the system to SmartPart, from
SmartParts to SmartParts and finally from system specs to the
physical artifact is not unique. There can be an infinite number
of plausible solution paths.

6.0 A PRODUCT DEVELOPMENT
TAXONOMY FOR SATISFYING
REQUIREMENTS AND CONSTRAINTS
A taxonomy is the theory, principle, or process of classifying
organisms in established categories (The American Heritage
Dictionary, 1981). Long term success depends upon the need
to create a product development taxonomy (a transformational
strategy for product realization) in which product
specifications (frames) can be transformed into a description
of a series of sub-specifications (sub-frames) for the lower
level transformations [Finger and Rinderle, 1989].

The product realization process can thus be viewed as a
definition of loosely connected transformations converting the
original specifications into an useful product or service (see
Figure 5). Each transformation level (shown in Fig. 5)
represents a subset of the product realization space at different
levels of abstraction and/or granularity. The key to gaining an
insight into any system is developing a functional model and
defining a set of input specifications and output characteristics
as a part of this system model. Comparisons to inputs

(specifications) and outputs (characteristics) are, in fact, the
constraints for the broad product development system model
(see Figure 3). Output constraints are related to input
specifications—a specification is broken up into several
requirements. Specifications include both the loads and sizing
parameters. Loads do not change but sizing parameters change
if the model needs to be altered to satisfy the computed
constraints. At the beginning of the transformation (stage 0),
the design often exists in pure specification form (see Figure
5).

6.1 Beginning of Iteration (Stage 0):
At the beginning of iteration, at start

 { SS0 } { ∅ } is at Initial set of specifications
(incomplete state), has an empty content.

And the set of SmartParts,

[<P10>, <P20>, <P30>, … <PX0>, <PM0>] [∅]
are at null state or has an empty content

During each stage, as described earlier, a three-step intra-part
process is used for satisfactions of specifications and
constraints. This is shown in Figure 6. Let us assume we have
“M” SmartParts.

 S2P Inter-Part Exchange: First, specifications are
passed from system-level master Specs (say SS) buckets
to SmartParts specs (say SX) buckets.

{ SS0 } ⇒ {<S10>, <S20>, <S30>, …<SX0> ,<SM0> }
where X=1, M.

 P2P Intra-Part Exchange: SmartPart solutions are
obtained for this modified specification set:

{<S10>, <S20>, <S30>, … <SX0>,… <SM0> }

Specifications are passed from specification templates to
sizing templates. This may provide new values for the
computed constraints requiring changing previous values
of the sizing parameters meaning previous assumed
values. This modified list of parameters shows up in the
sizing templates. Meaning, from the definition of
SmartParts, [<P10>, <P20>, <P30>, … <PX0>], the old
specification set is modified as follows:

<P10> <S10> <S11>

<P20> <S20> <S21>

<P30> <S30> <S31>

* * * * * * *

<PM0> <SM0> <SM1>

Geometry templates are the by-product of this
knowledge-based engineering process. Once the

 Copyright © 2005 by ASME

specifications are set (based on the customer’s inputs) and
appropriate constraints are applied (to provide feasible
designs) the display of the conforming design is carried
out by the geometry templates. Geometry primitives of a
CAD system are employed to display the computed
design in 3D form. Since the information flows from
specifications templates to sizing templates to finally
geometry templates, we call this process a top-down
process.

 P2S Inter-Part Exchange: The set of parameters, which
are modified are passed back from sizing templates to
system level master specification.

{<S11>,<S21>, <S31>, …<SX0>,…<SM1> } {SS1 },
where X= 1, M.

The triad-tree structure (shown in Figure 6), specifications and
goals—together provide a basis for system optimization.

Figure 6: Inter-part and intra-part
communications among white board for systems
specs and SmartParts

As various tasks within this IPPD are performed the set of
specifications changes to some realistic intended values. The
corresponding designs (meaning product and/or process
designs) begin to take shape.

6.2 Intermediate Stage (say ith Stage):
At the intermediate stage (say ith stage), the SmartParts
modules, [<P1i>, <P2i>, <P3i>, … <PXi>, … <PMi>]
transforms a set of specifications at state i from

<P1i > <S1i> to <S1i+1>;

<P2i > <S2i> <S2i+1> ;

<P31i > <S3i> <S3i+1> and finally

<PMi > <SMi> <SMi+1> respectively.

And the modified output of the previous state from
sizing becomes the specification data for the new
state.

that is,

 {<S1i>, <S2i>, <S3i>, …<SXi>, …<SMi> } {Si+1}

6.3 At the end (say nth stage)
When iteration reaches the last (nth stage), hopefully, all
specifications have been implemented. At that point all
SmartParts designs reach at their “full content”

Stage n: [<P10>, <P20>, <P30>, <PXi>, …<PMn>] [•]
a Full Content

And [<S1n>, <S2n>, <S3n>, <SXi>, …<SMn>] forms

[•] a Complete Set

The design can be thought of as having reached a “full or
complete content” when the sets of specifications stabilize and
when all the constraints have been satisfied. The artifact
contains all the information (enterprise, requirements, product,
process, and cognitive) needed to function as a unit as initially
desired. The aim of a good transformation strategy is to
uncouple the system so that each transformation state affects
only one set of outputs. This is very similar to Suh’s First
Axiom [Suh, 1988] in the axiomatic design theory.

7.0 IMPLEMENTATION INTO A
COMMERCIAL PLM TOOL

Parker Hannifin’s Control Systems Division uses CATIA V5
PLM system for designing and developing all of its products.
We, therefore, wanted to build a knowledge-based system
engineering process inside of CATIA, because in doing so, all
parameter definitions, naming conventions, captured rules,
best practices knowledge and Microsoft Excel table links
would be maintained by CATIA. We would not be required to
maintain any external links or external knowledgebase
interfaces since we didn’t built any outside. We also wanted
the system to be quite general purpose and the chosen system
architecture to be highly generic and reusable across different
product lines that Parker manufactures. In order to facilitate
these requirements, we built two knowledge-based
configurators

 Copyright © 2005 by ASME

Figure 7: How Product Solution is achieved from its
decomposed SmartParts during reconstruction loop

 A knowledge-based configurator for building the
SmartPart from the rules and their corresponding part-
templates (both captured in CATIA V5) (see Figure 7.)

 Another knowledge-based configurator for building the
product solution. ProductConfigurator assembles a
product solution from the set of decomposed constituents
(called SmartParts). (See Figure 7.)

The product development taxonomy described in section 4 is
implemented via the rule-bodies in CATIA V5
Knowledgeware tools. Three design tables are required to
initiate a new design (a) a table to select bill-of-parts and
appropriate materials, (b) a table to identify inputs, choose
design loads and basic configuration, and (c) a table to specify
the mating and assembly requirements for the SmartParts so
configured. They are shown in Figure 8.

Figure 8a: Bill-of-Parts and Materials Table.

Figure 8b: Table to Specify Inputs, Select Design Loads and
Basic Configuration Data.

Figure 8c: Table to Specify Mating and Assembly Constraints
Data.

8. RESULTS AND DISCUSSIONS
Parker designs a variety of products which control various
moving surfaces on airplanes like ailerons, tails, flaps and
rudders. In order to demonstrate “how the knowledge-based
system functions” we chose two families of actuator solutions:
simplex and tandem. The system specs data commonly
provided by airplane manufacturers generally provides a
majority of data for the design of these actuators. A list of
engineering specs data for tandem and simplex are shown in
two columns of an Excel table in Figure 8. The bill-of-parts
and constraints are unique for simplex and tandem solutions
since the name of decomposed parts and mating constraints
are different. Thus we provided a different set of inputs for
each.

The knowledge-based system engineering process architecture
described in Sections 3-4 were employed. The
ProductConfigurator ran through the SmartPart iteration
cycles and provided us with a feasible solution in the end.
At that point, we obtained a complete 3D solution in CATIA
V5 for both the cases. The 3-D isometric views of the simplex

 Copyright © 2005 by ASME

and tandem solutions and their cross-sections details are
shown in Figure 9a and 9b, respectively (as examples).

Figure 9a: Balanced simplex actuator with 3050 psi supply pressure and 3.89 inch stroke.

Figure 9b: Unbalanced tandem actuator with 4100 psi supply pressure and 9.49 inch stroke.

After checking through the calculations, we found that the
final designs meet all load requirements, length constraints,
and mating dimensions (including appropriate placements of
O-rings based on computed ODs (outer diameters) for the
moving parts).

9. CONCLUDING REMARKS
A knowledge-based system-engineering process has been
developed at Parker to realize new product families from only
raw specifications and reusable smart templates. The pertinent
characteristics of this development were realized by
decomposing the product in question into two levels: a system
level and a series of semi-independent SmartParts levels, so
that the necessary intra-part communication of common

parameters (requirements and constraints) is performed locally
during each SmartPart solution. The number of common
(interface) parameters were small since the dependency of the
decomposed parts in the product breakdown structure, and the
dependency while further decomposing each part into a set of
three SmartPart templates were minimized. By organizing
specifications into a single level SmartPart sets in parallel with
product system specs helped us to minimize non-compliance.
A two-level (consistent) taxonomy for controlling and bal-
ancing the flow of specifications (inputs, requirements, and
constraints) throughout the product development process were
used.

In addition, we used a consistent naming convention for the
template-parameters, so that they carry equal values if they

 Copyright © 2005 by ASME

have identical assigned names. This made passing the
specification values from system specs to SmartParts specs
and among templates of the SmartParts themselves a very
trivial problem. We piped two or more processes so that the
next process can start just after the first one is finished
generating the required information for the next process (just-
in-time). This shifted the controls of the original product
realization process to simply “managing the individual
template-based SmartParts.” SmartParts methodology
described earlier took care of local satisfaction of constraints
and essential communications among the three intra-part
tracks represented by those templates. Only what has been
modified at system level or changed during a SmartParts
sizing-level template solutions were exchanged across
templates. The methodology allowed us to solve the
decomposed SmartParts in parallel to each other—in no
specific order.

The result of this implementation has produced a
tremendous savings in reusability of knowledge, reduced
product lead time, reduced errors, quality improvements, and
customer satisfaction. It has also helped us in driving down the
costs of new product development.

10. ACKNOWLEDGEMENTS:
Authors would like to thank Parker Hannifin, Aerospace
Group for providing R&D funding. Thanks to the Control
Systems Division personnel for giving their valuable time for
mining their product and process knowledge in order to built a
prototype system for configuring a Hydraulic Actuator. The
concept developed in this paper is quite general and could be
applied to any product, process or system. The theoretical
basis was based on some of the authors’ prior works [Prasad
76, 77]. However, its implementation using KBE is
completely new and was never tried before. Authors would
like to thank Mark Czaja, Matt Ivary, Glenn Zwicker, Glenn
Kirkendall, and a number of close associates of the authors
including Valori Zaffino, Brian Tims, Scott Leland, Hector
Espinoza and Constante Manapsal. Without their help, its
successful implementation would not have been possible.

11. REFERENCES
1. Chen, B., and Menq, C.-H., 1992, “Initial Attempts

On the Characterization of Functional Requirements
of Mechanical Products,” PED-Vol. 59, Concurrent
Engineering, ASME WAM, 1992, Anaheim, CA, pp.
315-329.

2. Deming, W.E., 1993, The New Economics,
Cambridge, MA, published by MIT Center for
Advanced Engineering Study, November 1993.

3. Finger, S., and Rinderle, J.R., 1989, “A
Transformational Approach to Mechanical Design
Using A Bond Graph Grammar”, ASME DE-Vol. 17,
Design Theory and Methodology -DTM ‘89, Edited
by Elmaraghy, Seering and Ullman, ASME Ist Int’l

Conference on Design Theory and Methodology,
Montreal, Quebec, Canada, Sept. 17-21, pp. 107-116.

4. Nielsen, E., 1990, “Designing Mechanical
Components with Features”, Ph.D. Thesis, University
of Massachusetts, Amherst, MA.

5. Prasad, B., 1996, Concurrent Engineering
Fundamentals: Integrated Product and Process
Organization – Volume I, Prentice Hall PTR, Upper
Saddle River, New Jersey.

6. Prasad, B., 1997, Concurrent Engineering
Fundamentals: Integrated Product a Development –
Volume II, Prentice Hall PTR, Upper Saddle River,
New Jersey.

7. Prasad B., 1999, “Enabling principles of Concurrency
and Simultaneity in Concurrent Engineering,”
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, Vol. 13, pp. 185–
204,Cambridge University Press 0890-0604099.

8. Pugh, S., 1991, Total Design, Addison-Wesley

Publishers, Wokingham, UK.

9. Rogers, J. and Prasad, B. “Getting the Most Gains
Out of Knowledge-based Engineering – Parker
Aerospace Experiences”, 2004 Annual Conferences
& TechniFair, April 25-28, Fontainebleau Hilton
Resort, Miami Beach, Florida, 2004.

10. Stauffer, L.A., and Slaughterbeck-Hyde, 1989, “The
Nature of Constraints and Their Effect on Quality
and Satisficing”, ASME DE-Vol. 17, Design Theory
and Methodology -DTM ‘89, Edited by Elmaraghy,
Seering and Ullman, ASME Ist Int’l Conference on
Design Theory and Methodology, Montreal, Quebec,
Canada, Sept. 17-21, pp. 1-8.

11. Suh, N.P., 1988, The Principles of Design, Oxford
University Press, Oxford, UK.

12. Szucs, E., 1980, “Similitude and Modeling”, Elsevier
Scientific Publishing Company, 1980, pp. 42.

13. Taylor, D.A., 1993, “Object-Oriented Technology -
A Manger’s Guide”, Addison-Wesley Publishing
Company, Reading, MA.

14. Thompson, J.B., and Lu, S.C.-Y., 1989,
“Representing and Using Design Rationale in
Concurrent Product & Process Design”, in
“Concurrent Product and Process Design”, ASME
Winter Annual Meeting, San Francisco, California,
DE-Vol. 21, PED- Vol. 36, Dec. 10-15.

