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ABSTRACT 
Designing and developing highly engineered products requires 
direct (and more dynamic) associations between customers’ 
specifications and product characteristics (or its behaviors). In 
order to meet the specified customer performance, cost, and 
integrity goals, a multitude of specialized analyses, heuristics, 
shortcuts, look-up tables, equations, algorithms, finite 
elements, and material substitution at multiple levels (system, 
subsystems, components and parts) are ought to be performed. 
The product geometries of such engineered product are often 
complex and many parts are designed interactively from 
scratch using a 3D commercial computer-aided design (CAD) 
-- lately often referred as Product Life-cycle Management 
(PLM) system. Today, this very “PLM-based” engineered 
product-design process is often “static”, very “feature or 
geometry-dependent,” “knowledge-intensive,” and therefore, 
engineers often takes considerable time (months) to complete 
this manual process.  
 
Today, more and more companies want to quickly reengineer 
a product from a multitude of family solutions (corresponding 
to various design trade-off studies).  They are interested in 
some dynamic form of a decision-based system that could 
automatically filter through a multitude of historical product 
solutions and quickly reconfigure one that meets the customer 
requirements with the least cost, weight, and time investment. 
Such decision-based product automation is not an easy task by 
any means. Product definitions without knowing specific 
geometry are hard to conceive, capture generically, and reuse 
widely (via any generative tool). A typical product 
development process —by its nature—is highly dynamic, 
nonlinear, discrete, feature-dependent, and part-
dependent. The solution is not easy, since problem 
formulation is time-bound, has numerous discrete inputs, 
topologies, and several mathematical discontinuities. 
 
This paper discusses the system architecture of the 
Knowledge-driven Automation (KDA) program -- established 
at Parker in 2002. It addresses many of the above product 
development issues and problems. In particular, authors 
describe a Knowledge-based System Engineering Process for 
Obtaining Engineering Design Solutions in a Commercial 
PLM Setting. The architecture and solutions use a number of 
innovative knowledge-based engineering (KBE) concepts and 
procedures. Through strategic use of generative modeling, 

spreadsheet tables, part and assembly templates, system 
engineering concepts, and our proprietary “smart part 
concepts,” authors were able to engineer-to-configure a 
family of hydraulic actuators automatically from their 
customer specifications using a set of PLM (CATIA V5 and 
its underlying knowledgeware) tools. 

1.0  INTRODUCTION 
Conventional product design and development practice in 
PLM often concentrates solely on constructing “end-use” 
descriptions of the product-- often called layout or detailed 
designs. Most layout descriptions fall in two categories: 
concept descriptions and math-based descriptions. Examples 
of concept descriptions are a concept paper, a product 
schematic sketch, a blueprint or drawing, and/or a physical 
model (mock-up). Many of virtual or math-based descriptions, 
in the layout stage, are explicit representations of geometry in 
either “flat files” (such as CAD file/2D parts geometry) or in 
“digitized 2D/3D form” (such as in popular CAD entities: 
arcs, lines, surfaces, etc.) In the preliminary stages of layout 
design, some of the tangible deliverables are: functional 
decomposition, device models, back of the envelope 
calculations, detailed or fixed dimensional geometry and 
drawings. This is shown by the shaded blocks in Figure 1. 
When a layout is “locked-in” in digitized forms, it is easy to 
create tool-path or NC data, post processing data (machine 
inspection) and prototype machining (streolithography), etc. It 
is also easy to create downstream results, such as bill-of-
materials (BOM), process plan, products manual, users 
manual, service plan, etc. (see Figure 1. Some of the 
intermediate deliverables at this stage include: design, 
manufacturing specifications, tooling specifications, and even 
physical prototypes. These deliverables are for the “locked-in” 
form of CAD data (static form). This is because text and point 
data in CAD present no problem if the “original intent” of the 
design is not altered. However, via fixed-dimension modes, it 
is very difficult to transfer or reformat the intent of an 
engineering design to any other form or object. Intermediate 
deliverables are not the end product of the design process. 
Using a symbolic representation or a variable dimensional 
(parametric) mode, one can generate these intermediate 
deliverables easily for a variety of new or altered situations. 
Parametric and knowledge based CAD representations are 
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examples of such techniques that are based on capturing 
design intent not just capturing the results of CAD 
documentation.  

It is also generally said that 70% of the product cost is “com-
mitted” or “locked-in” after the layout design is complete. 
This presents three dilemmas:  

• First, layout designs (locked-in a fixed-digitized form) are 
not flexible, so engineers are unable to   incrementally 
modify them as they move into other iterative life-cycle 
analysis phases.  

• Second, even if such flexibility exists, no matter how 
many engineers would try, the expected gain will only be 
a fraction of the remaining 30%. The reason for this is 
because 70% of the designs were already frozen or 
committed at this point.  

• Third, even if description of the design process at this late 
stage is captured parametrically or through similar means 
(of representing design rationale) it will not be of much 
use since most communications in the current process are 
carried out in explicit forms (such as blueprint or 
drawings, CAD geometry, etc., as explained above and in 
Figure 1).  

 

 

Figure 1: List of typical deliverables in a 
conventional design & development process 
 
Knowledge-based product data management (PDM) and 
knowledge-based product lifecycle management (PLM) tools 
are emerging today as viable means to capture the best 
practices, analyses, sizing principles, and methods and 
communicate them across the various life-cycle functions of 
product development. 

While designing an artifact, teams often forget that the product 
is a system. Products consist of subassemblies each fulfilling a 
different but distinct function. A subassembly is a group of 
two or more units that can be brought together (say for 
instance, shared axes or fit together). Relation information 
connects subassemblies, processes, design methods, and/or 
physical features. Subassembly information includes 
components, parts, and features (materials, attributes, 
parameters, and geometry) as well as other sub-systems. 
Process information includes assembly or manufacturing 
considerations such as joining faces, aligning bolts, common 
axes, welding lines, etc. Design methods include parts layout, 
design rules, analysis methods, packaging schemes, 
dimensional tolerance, material substitution, and form options. 
A feature is a representation of form, relevance, and intent to 
some aspect of part design of interest to either functionality 
(part features or so called form features) or manufacturability 
(e.g., DFX) [Nielsen, 1990]. Form signifies the attributes of 
the features present, their connectivity (topology) and 
geometry. Relevancy points the reason a feature is included in 
the design (e.g., issues related to functionality or DFX rules). 
Intent represents the imposed constraints by the concurrent 
engineering (CE) teams on the freedom of the parts’ function 
or rules associated with a DFX principle. In order to achieve a 
truly integrated product and process design (IPPD), all the 
above needs have to be considered simultaneously. The core 
concept of IPPD is the system definition. Consider what Szucs 
[1980, pp. 42] stated: The term system is used to denote an 
object composed of certain elements that are linked by well-
defined (but not necessarily known) relationships. It is stipu-
lated that the system may interact with its environment 
(receive external stimuli) and that its behavior comprises 
responses that are useful or profitable to the operator. Objects 
completely isolated from their environment (completely closed 
system) and phenomena that cannot be influenced by person 
are not regarded as systems in the technological sense. 

2.0 SYSTEM CONSTITUENTS 
Before we take a close look at the requirements of a full IPPD 
system, let us review what constitutes a system. Truly, a 
system has three parts: 

(a) Class Hierarchy (a structure definition): Class hierarchy 
is a very efficient mechanism for system definition 
because one can use method and variable definitions in 
more than one subclass (such as sub-systems, 
components, etc.) without duplicating their definitions. 
For example, consider a system that represents various 
kinds of human operated vehicles (See Figure 2). This 
system would contain a generic class for vehicles, with 
subclasses for all the specialized types. Five major 
subclasses might include: auto, truck, bus, aircraft and 
land transport devices. The generic vehicle class would 
contain the methods and variables that were pertinent to 
all vehicle features, such as identification numbers, 
passenger loads, fuel capacity, etc. The subclasses, in 
turn, would contain any additional methods and variables 
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that were specific to the specialized cases [Taylor, 1993]. 
Truck may consist of pick-up, van, and a tractor-trailer. 
Land transport devices may include subclasses such as 
motorcycles, bicycles, skateboards and unicycles. 

 
 {Motorcycles } 

{Bicycles} 

{Train}    ∈   [Land transport devices] 

******** 

{Tram}   

 Where ∈   denotes an element of a set or member of the 
class hierarchy. 

 
(b) Integration Hierarchy (an assembly definition): 
 
 [Land transport devices]  ⊃ {Motocycles, Bicycles, 

Train,…, Tram} 
 Where ⊃ denotes “is a member of super class set.” The 

elements in the curly bracket are its member classes. 
 
(c) Constancy-of-specifications, requirements, purpose or 

goals: This identifies the key product functions, 
requirements or constraints (RCs) of the product system, 
some of them are also common to its elements (product 
sub-classes). For example, general system-level RCs must 
gives rise to component (e.g., a department unit) level 
RCs. Constancy means carrying the same definition and 
the same sets of requirements hierarchy and management 
process throughout a product development process. 
Integrated product definition (IPD) teams must agree on a 
common set of engineering requirements that relate to the 
company’s (high-level product development) goals and 
customer needs. Constancy of RCs also provides a 
common set of ground rules for mutual cooperation and 
communication throughout the product development 
community. If a product development process is “left to 
themselves in the Western world, components become 
selfish, competitive, independent profit centers [Deming, 
1993].”  

 
RCs parts ∃   RCs components  ∃  RCs subsystems  ∃  RCs system   

∃  RCs department  ∃  RCs SBUs  ∃  RCs enterprise 

where, ∃ denotes an element of.  

 

Figure 2: Class of human operated vehicles 
Having a definition of what constitutes a system is the first 
step toward being able to manage an IPPD system. However, a 
product-breakdown structure or its definition alone is not 
enough. The design of a typical automobile, aircraft, 
helicopter or computer involves thousands of engineers 
making millions of design decisions over several years.  Class 
hierarchy was one of the key elements of organizing a 
complex product as described by Prasad [Chapter 8, pp. 380-
387]. Decomposing the product realization process into class 
hierarchy of discrete activities is another essential element of 
IPPD.  

3.0 SYSTEM LEVEL 
ORGANIZATION OF INTEGRATED 
PRODUCT & PROCESS 
DEVELOPMENT 
An important distinction in applying knowledge-based 
engineering to IPPD is to recognize that the artifact being 
designed is an assembly or a system (i.e., something which is 
composed of a hierarchy of sub-systems, components, parts, 
and templates). Templates form the lowest level of inputs for 
reconstructing the system. A number of reusable templates 
could define a generic part. A system level organization of 
product development activities is shown in Figure 3.  
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Figure 3: A system level organization of integrated 
product and process development activity 
 

Organization of an IPPD process plays an important role in 
ensuring the effectiveness of the resulting production system. 
Organization of IPPD can be approached by carefully splitting 
the system-level problem into its mutually separable 
transformation states, followed by modeling of each state, then 
the reconstruction of a system definition from the aggregate 
definitions of its constituent states [see Prasad, 1977].  

As shown in Figure 3, functional description of a product 
realization process thru IPPD consists of three major 
components: 

• System Decompositions: During system decompositions, 
systems are broken into subsystems, subsystems into 
components, components into parts. Finally the parts are 
expressed in terms of base templates. The templates, in 
turn, consist of both geometric and non-geometric set of 
features and parameters. There arc many ways a product 
can be decomposed. In the Figure above, 5 levels of 
decomposition are shown. Level 0 is finished product 
solution. Level 5 represents specifications, BOPs, BOMs, 
etc. The number of levels depends upon the complexity of 
the problems and the desired aggregation schema used.  

  
• Part Solutions: One key aspect of product realization is 

to recognize that a “part” can be made out of multiple 
templates. The solution for each template-based construct 
is sought concurrently having shared specifications being 
part of a global set of specifications stored at the system 
level. During solution iterations attempts are made to 
satisfy the various part-template goals. Normally, during a 
single pass of an “all” parts solution, only a portion of 
each part’s goals are satisfied. The part’s goals which are 
not met are passed onto the system’s level goals. The 
design then enters into a system reconstruction loop.  

 
• System Reconstruction: During system reconstruction, 

parts are assembled, inter-part constraints are applied, and 
its system performance is measured. Value engineering 
and continuous process improvement are considered part 
of this validation. If no improvement is desired, the 
artifact system is converged; otherwise, necessary 
improvements are incorporated through a secondary 
redesign bypass loop.   

4.0   PRODUCT SYSTEM 
DECOMPOSITION 
Product decomposition means viewing the product realization 
process as a part of the whole and then overlapping 
(aggregating) the decomposed sets to recreate or reconstruct 
the whole system from its constituent parts. In other words: 
 

Product Realization   ⇔ [Decomposing (parts-from-
the-whole)  ⊕  Reconstructing (whole-from-the-parts)] 
    

The term “whole” also includes multiple characteristics of 
life-cycle concerns (e.g., X-ability) that we may need to 
consider. Many products can be decomposed safely into sets 
or class hierarchy. However, not all such decomposed sets of 
life-cycle activities in a product exhibits independence.  

Smith and Browne [1993] describe decomposition as a 
fundamental approach to handling complexity in engineering 
design. The two (decomposition + concurrency) allows one to 
identify activities that can be overlapped or performed 
simultaneously. It also allows one to formulate strategies 
leading to their separation, e.g., indexing, alternate 
decomposition, teaming, or restructuring.  In good product 
decomposition, the decomposed class hierarchy is described in 
such a way that their interfaces are eliminated or minimized. 

Attributes that are essential for successful product realization 
outcomes are: 
 
• Minimize Interfaces:  This entails reducing all sorts of 

interfaces required for both decomposition and 
reconstruction parts of the “Product Realization Process” 
to a minimum. 

     
Number-of Pinterfaces  ⇒ Minimum    

These include the interface relationship between 
management and design, supplier interface, design 
development interface, design to assembly interface, 
design to manufacturing interface, production interface, 
etc. Such interfaces can be very long indeed and tend to 
depend upon the size of the company and the product and 
process complexity.  

Do all the decomposed parts exhibit independent or semi-
independent characteristics?  Due to increased global 
pressure to bring a product early into the marketplace, 
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parallel processing in CE is becoming a necessity. There 
are, however, many ways a product, process or work 
information can be decomposed and overlaid in parallel. 
If a product, process or work information activity does not 
affect other parameters or processes, it can be performed 
locally.  If it does, it can be performed in a distributed 
fashion by the IPPD team. Local or distributed 
processing, to a large extent, depends on how a product 
structure is originally broken up or decomposed. 
Wherever there is a dependency, a dependent portion (for 
instance a part or a process) should not be designed in 
isolation from the rest of the product or process. This is 
derived from the proposition that if a component is sub-
optimized in isolation from the rest, the whole may not be 
fully optimized. Good decomposition allows the 
scheduling of activities to proceed in parallel. For 
example, it is not necessary to delay the start of an 
activity if the information required for a decomposed 
activity is not dependent on the rest. 
 

• Quick Processing: means performing individual activities 
as fast as possible using knowledge-based productivity 
tools, lean process reengineering tools, design aids or 
knowledge-based engineering techniques. It also amounts 
to speeding up the preparation time in building up the 
information content before and after an execution of a 
task. This emphasizes the mandate for shortening the pre- 
and post-processing time and the time it takes for 
completing the decomposed tasks themselves. 

 
Quick Processing  ⇔ Minimize Lead-time-of 
Ptask-i  for I=1, n     

Where, n is the number of tasks in the P-set.  

• Virtual Communication:  This provides transparent 
communication among the individual activities that are 
partitioned (decomposed). 

  
Tasks Pcommunication  ⇒  Transparent   

There is a difference between the complexity of the 
philosophies (such as product complexity, process complexity, 
enterprise complexity, and the philosophies of their virtual 
communications. An organization committed to making such 
complex products in the shortest possible time need pay equal 
attentions to providing virtual communication among the 
individual activities that are decomposed. This amounts to 
using inter-part and intra-part communication techniques that 
are method-dependent but part-independent.  

Through a knowledge-based approach, engineers optimize the 
artifact simultaneously with the aid of knowledge and 
experience acquired from the experts. Engineers acquire the 
product and process knowledge and then use the power of 
intelligent multi-template systems to guide decision making. 
[Prasad, 1977]. In the decomposition schema introduced in 
this paper, a two level decomposition (Level 1 and Level 2) is 

used. The Actuator System Solution represents Level 1. 
SmartPart definition, described next, represents Level-2 
decomposition. 

5.0 DEFINITION OF A SMART PART 
When a team develops a part, it specifies three types of 
information: inputs to a given baseline system, certain 
behaviors required from the existing system, and changes or 
restrictions on the future behaviors of the system. In this 
definition, they are characterized as inputs, requirements, and 
constraints, respectively. 

Inputs: Inputs are everything needed to carry out an IPPD 
process or a function.  

Inputs { Ii } include data { Di }, knowledge { Ki }, and 
process { Pi } at state i.  

Inputs = Function-of (Data, Knowledge and Process) 

or  Ii  ≡  ƒ  [ { Di }, { Ki }, { Pi } ] 
Inputs at an intermediate state assume the values of the 
previous state inputs during transformation. Initial data is 
usually derived from environmental conditions, customer 
requirements, or voice of the customer. Data may also be 
present as capital investments, people, money, materials or 
equipment. Another element of input is the process Pi at state 
i. The process includes teams, skill, and leadership, as well as 
the state of domain, infrastructure, tools, organization, 
information, communications, technology, and other business 
processes. Ki is the product or process knowledge including 
scientific, technological, empirical, statutory, social, cultural, 
or environmental aspects.  

Requirements: These are defined as “necessary” statements of 
the characteristics of a domain object that are required (Ri) to 
describe the domain, its features, or its multiple behaviors. 
Requirements may take the form of industry standards, 
materials characteristics, aesthetic considerations, human 
factors, safety, ergonomics, regulatory, ecological or 
environmental conditions among others. 

Constraints: Constraints are the restrictions on the inputs and 
the requirements. Constraints Ci, at state i, restrict the 
behaviors of the domain object to function in a particular or 
specific way. Collectively, the constraints define what will be 
an acceptable outcome. The restrictions range from social, 
political, economic, technological, ecological, legal to random 
behaviors. The simplest form of constraint would be like 
assigning a value to a form or function feature. In the context 
of engineering design, a constraint can be thought of as a 
required relationship among design attributes and features.  

The above framework items are collectively called herein a 
system specification set { SSi }: 

 { SSi }  ≡ ∪ [ {Ii  }, { Ri }, { Ci }  ] 
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To understand “IPPD process” definitions, it is useful to start 
with a definition of a “SmartPart” model. A SmartPart 
definition is shown in Figure 4 using a three-template schema: 
specifications, sizing, and geometry. [Prasad, 1977]. 

• Specification Template: The specification template 
captures both inputs and requirements for design. All 
attributes related to specification inputs, like materials 
data, fatigue life computation knowledge and specific 
processes for a particular part family are captured via 
knowledge rules and instructions. It contains no 
geometry. 

 

Figure 4: Definition of a SmartPart and how it is 
reused to create intelligent part families 
 
• Sizing Template: The sizing template capture the 

analytical basis of design and thus provide the constraints 
for the problem definitions. It serves as a modifier for the 
initial system specifications block. All inputs and 
knowledge related to sizing of the part and a decision-
making process for making a trade-off against the 
captured constraints are modeled using knowledge rules 
and instructions. It also contains no geometry. 

 
• Geometry Template: The geometry template is a feature-

based representation of the design intent. It takes the 
inputs from both specification and sizing templates and 
forms geometric definitions from those abstract 
specifications. This is commonly achieved using a 
CAD/CAM or PLM environment. 

 
Such a three-template schema is interrelated, by design. It is 
effectively used to capture and define the artifact’s intent 
according to the perceived customer needs. Using this 
approach, the SmartPart model broadly defines the constraint 
boundaries, overall requirements of the product design, 
problem resolution definition, and life-cycle intent.  

One of the most important steps in IPPD is the creation of a 
detailed taxonomy of the “product solution process” [Prasad, 
1977]. Taxonomy allows concurrent realization of an artifact 
in an orderly fashion.  The three-template schema (altogether 
called herein as SmartPart) serves as the set of reconfigurable 
building blocks for this taxonomy. Using the three-component 
construct, authors were able to transform the system specifica-
tions (inputs, requirements, and constraints) into a solution 
output (in the form of a physical artifact). The sizing template 
(a component of the SmartPart) serves a very useful purpose 
since it embodies a basis of comparison of prediction with 
measurements. 
  
First, a SmartPart template captures the system’s behavior in 
some form of abstraction or formalism. Second, to use this 
formalism, it transforms some crude description of the parts’ 
desired behavior (called system specifications) into a customer 
requirements and finally into a physical description. Let us 
assume that the IPPD System problem at hand consists of “M” 
SmartParts. Figure 4 shows a mapping of the functional 
description of the product and all of its decomposed 
components (SmartParts) through a series of transformations 
leading to a physical description. The series exhibits a 
precedence relationship among its transformed states. Each 
state is governed by a set of SmartParts, which may be 
executed in any random order. Each smart part is driven by a 
set of specifications (via a specification template) and a set of 
sizing constraints (via a sizing template), which in turn 
produces a set of consistent geometry outputs (via a geometry 
template). Let us also assume that convergence of the product 
solution is achieved by repeating this transformation process 
“n” time. 

Let us assume further that  
       [ <P10 >,  <P20>,  <P30>,  …, , <PXk>,   …,  <PM0>] 

represents an activity plan for a set of  SmartParts (X=1, 
M) at the initial state of transformation (k=0). 

 
Thus, at an intermediate (say ith iteration point),  
[ <P1i >,  <P2i>,  <P3i>,  …, ,  <PXi>,   …,  <PMi>] 
represents an activity plan for a set of SmartParts from  X=1 to 
X=M. 

  
And [ <P1n >,  <P2n>,  <P3n>,  …, , <PXn>, …,  <PMn>] 

represents an activity plan for a set of  SmartParts at the 
conclusion of nth state of transformation. 

 
Let us also assume,  

 [ { S1i },  {S2i },  {S3i },  ...,, { SXi},…, { SMi } ] denotes a set 
of SmartPart specifications from X=1 thru X=M at a 
transformation state i. 
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The relations between the system Specifications { SSi’s },and 
SmartPart functional specifications  
Namely,  [ { S1i },  {S2i },  {S3i },  …, ,  { SXi},…,  { SMi } ] 
is expressed as 

{ SSi’s } ==  U [{ S1i },  {S2i },  {S3i },  …, ,  { SXi},…,     

                                  { SMi } ] 

Where U indicates Union of individual specifications. Each of 
these templates is discussed next: 

 

Figure 5: A transformation strategy for realizing a 
product system solutions from its decomposed 
SmartParts 

5.1 Parts Specification Templates 
A part’s specification template provides a mechanism to pass 
the technical specifications from system-level tree to parts-
level tree. Technical specifications help identify both the 
product’s functional intent as well as its parts’ characteristics. 
Technical specifications are the equivalent of the customer 
requirements that are stated in meaningful and quantifiable 
terms. “Meaningful” implies they are understandable to 
engineering communities; “quantifiable” indicates that they 
can be measured in physical parameters like force, distance, 
torque, acceleration, rates of change, and so forth. The 
customer requirement for an engine that accelerates fast might 
be translated into a technical requirement of “time it takes to 
reach a speed of 100 miles per hour under specific condi-
tions.” The customer requirement for a door that opens easily 
can be translated into technical requirements for “amount of 
force required for a given push or rotation depending upon the 
type of handles used.” Technical requirements can also be 
established directly using the technical expertise of 
experienced engineers. It can also be taken from product 
acceptance standards if the work-group can intelligently 
reflect the customer needs or expectations.   

This specification template converts a set of system 
requirements, SSs (such as those to fulfill the customer 
requirements (CtRs) into a set of part requirements (PtRs). 
Then development of the physical embodiment (enrichment of 
data, process and knowledge) takes place first in the part 
specification template and then in “sizing” and “geometry” 
templates. 
 
    [<PXi >; X=1, M ] specs   { <CtRsi >}    { PtRsi }   

5.2 Parts Sizing Template 
A sizing template is made out of two types of Part’s 
specifications: behavioral and physical.   

• Behavioral: Those specifications that describe the desired 
behavior of the overall system at an abstract level are 
called behavioral specifications. Examples of behavioral 
specifications include global behaviors, such as limits on 
overall frequency, stiffness, etc. Note that strength is not a 
system behavior because it is generally governed by 
“local characteristics” such as presence of notch, crack, 
etc.  

• Physical: Physical specifications place physical 
restrictions on the outputs, such as geometry, allowable 
sizes and weights, amount of scraps, etc.  

 
Representations of the behavioral inputs and physical 
requirements must be linked to representations of their 
physical characteristics, which dictate the constraints. 
Constraints at different levels of abstraction guide the design 
process. RCs are also used to maintain consistency and 
propagate design decisions. The relationship may exist in an 
explicit form, like an analytical form (such as design 
equations.) A physical term, the weight of a helical coil spring, 
for example, is analytically expressed as the product of 
stiffness and the square of the allowable deflection, a 
behavioral term. Other forms in which this relationship exists 
are database entries, like a spreadsheet, or an implicit form, 
such as a finite-element method (FEM) or CAD geometry 
which relate geometric characteristics (such as weight) to 
behavior characteristics (such as stiffness). CATIA V5 
provides a number of techniques for capturing that knowledge 
into equations and rules. 

Here, a  series of mapping for smart part sizing occurs 
transforming the part-requirements (PtRs) as described by 
Prasad [1977] into part-constraints, (PtCs): 
       

     [<PXi >; X=1, M ] sizing   { <PtRsi >}    { PtCsi }   

5.3 Parts Geometric Template 
Most of the activities in the product development cycle of 
mechanical products are centered on generating and designing 
geometric shapes that perform some specific functions. 
Geometrical requirements may include generation of 
geometry, topology, dimensions, and process tolerances. 
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There are two types of functional requirements (FRs) that are 
usually needed to model the product geometry adequately: 
quantitative FRs  and intent FRs. A complete design of a 
product requires not only the FRs but also the geometric 
configurations that realize the FRs. This views an assembly as 
a hierarchy of standard class structures and uses a strategy of 
known classes to devise a plan for the whole assembly. This 
identifies a class hierarchy within each concept representation 
(such as behavior or physical models). For example, instead of 
viewing an assembly as a set of parts, one can view it as 
composed of a set of class structures. Structure description 
could be a class representing standardized relationships among 
a set of parts. These descriptions typically form a class, which 
is made out of other classes. For example, a door structure is 
composed of a latch structure and two door hinge structures. A 
door hinge structure is composed of a hinge pin structure and 
two multiple screw plate structures. The multiple screw plate 
would be composed of an odd number of simple screws and a 
solid circular pin. The simple screw would be composed of a 
variety of contact (seating and positioning) structures. 

A series of mappings for part geometric template transforms 
the part constraints (PtCs) into the physical geometry domain 
(or the artifact itself).  
 
  [<PXi >; X=1, M ] geometric  { <PtCsi >}    { PtGsi }   

Where, {PtRsi}, {PtCsi} and {PtGsi} represent the vector of 
part requirements, part constraints and geometry requirements, 
respectively. 

The mapping process from the system to SmartPart, from 
SmartParts to SmartParts and finally from system specs to the 
physical artifact is not unique. There can be an infinite number 
of plausible solution paths.  

6.0 A PRODUCT DEVELOPMENT 
TAXONOMY FOR SATISFYING 
REQUIREMENTS AND CONSTRAINTS 
A taxonomy is the theory, principle, or process of classifying 
organisms in established categories (The American Heritage 
Dictionary, 1981). Long term success depends upon the need 
to create a product development taxonomy (a transformational 
strategy for product realization) in which product 
specifications (frames) can be transformed into a description 
of a series of sub-specifications (sub-frames) for the lower 
level transformations [Finger and Rinderle, 1989].  

The product realization process can thus be viewed as a 
definition of loosely connected transformations converting the 
original specifications into an useful product or service (see 
Figure 5). Each transformation level (shown in Fig. 5) 
represents a subset of the product realization space at different 
levels of abstraction and/or granularity. The key to gaining an 
insight into any system is developing a functional model and 
defining a set of input specifications and output characteristics 
as a part of this system model. Comparisons to inputs 

(specifications) and outputs (characteristics) are, in fact, the 
constraints for the broad product development system model 
(see Figure 3). Output constraints are related to input 
specifications—a specification is broken up into several 
requirements. Specifications include both the loads and sizing 
parameters. Loads do not change but sizing parameters change 
if the model needs to be altered to satisfy the computed 
constraints. At the beginning of the transformation (stage 0), 
the design often exists in pure specification form (see Figure 
5).  

6.1 Beginning of Iteration (Stage 0):   
At the beginning of iteration, at start  

      { SS0 }  { ∅ } is at Initial set of specifications 
(incomplete state), has an empty content. 

And the set of SmartParts,  

[ <P10>, <P20>, <P30>, … <PX0>,  <PM0>]   [ ∅ ] 
are at null state or has an empty content 

During each stage, as described earlier, a three-step intra-part 
process is used for satisfactions of specifications and 
constraints. This is shown in Figure 6. Let us assume we have 
“M” SmartParts. 

 S2P Inter-Part Exchange: First, specifications are 
passed from system-level master Specs (say SS) buckets 
to SmartParts specs (say SX) buckets. 

{ SS0 } ⇒  {<S10>, <S20>, <S30>, …<SX0> ,<SM0> } 
where X=1, M. 

 P2P Intra-Part Exchange: SmartPart solutions are 
obtained for this modified specification set:  

{<S10>, <S20>, <S30>, … <SX0>,…  <SM0>  } 

Specifications are passed from specification templates to 
sizing templates. This may provide new values for the 
computed constraints requiring changing previous values 
of the sizing parameters meaning previous assumed 
values. This modified list of parameters shows up in the 
sizing templates. Meaning, from the definition of 
SmartParts, [ <P10>, <P20>, <P30>, … <PX0>  ], the old 
specification set is modified as follows:  

<P10> <S10>   <S11> 

<P20> <S20>   <S21> 

<P30> <S30>   <S31> 

*   *   *   *   *   *   * 

<PM0> <SM0>   <SM1> 

Geometry templates are the by-product of this 
knowledge-based engineering process. Once the 
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specifications are set (based on the customer’s inputs) and 
appropriate constraints are applied (to provide feasible 
designs) the display of the conforming design is carried 
out by the geometry templates. Geometry primitives of a 
CAD system are employed to display the computed 
design in 3D form. Since the information flows from 
specifications templates to sizing templates to finally 
geometry templates, we call this process a top-down 
process. 

 P2S Inter-Part Exchange: The set of parameters, which 
are modified are passed back from sizing templates to 
system level master specification. 

{<S11>,<S21>, <S31>, …<SX0>,…<SM1> } {SS1 }, 
where X= 1, M. 

The triad-tree structure (shown in Figure 6), specifications and 
goals—together provide a basis for system optimization. 

 

 

Figure 6:  Inter-part and intra-part 
communications among white board for systems 
specs and SmartParts 
 

As various tasks within this IPPD are performed the set of 
specifications changes to some realistic intended values. The 
corresponding designs (meaning product and/or process 
designs) begin to take shape.  

 

6.2 Intermediate Stage (say ith Stage):  
At the intermediate stage (say ith stage), the SmartParts 
modules, [ <P1i>, <P2i>, <P3i>, … <PXi>, … <PMi>   ]  
transforms a set of specifications at state i from  

<P1i > <S1i> to   <S1i+1>;   

<P2i > <S2i>       <S2i+1> ;  

<P31i > <S3i>     <S3i+1> and finally  

<PMi > <SMi>    <SMi+1> respectively. 

And the modified output of the previous state from 
sizing becomes the specification data for the new 
state. 

that is,  

  {<S1i>, <S2i>, <S3i>, …<SXi>, …<SMi>  }  {Si+1}  

6.3 At the end (say nth stage)  
When iteration reaches the last (nth stage), hopefully, all 
specifications have been implemented. At that point all 
SmartParts designs reach at their “full content” 

Stage n: [<P10>, <P20>, <P30>, <PXi>, …<PMn>]   [• ] 
a Full Content  

And [<S1n>, <S2n>, <S3n>,  <SXi>, …<SMn>]    forms 

[•  ]  a Complete Set 

 
The design can be thought of as having reached a “full or 
complete content” when the sets of specifications stabilize and 
when all the constraints have been satisfied. The artifact 
contains all the information (enterprise, requirements, product, 
process, and cognitive) needed to function as a unit as initially 
desired. The aim of a good transformation strategy is to 
uncouple the system so that each transformation state affects 
only one set of outputs. This is very similar to Suh’s First 
Axiom [Suh, 1988] in the axiomatic design theory.  

7.0 IMPLEMENTATION INTO A 
COMMERCIAL PLM TOOL 

Parker Hannifin’s Control Systems Division uses CATIA V5 
PLM system for designing and developing all of its products. 
We, therefore, wanted to build a knowledge-based system 
engineering process inside of CATIA, because in doing so, all 
parameter definitions, naming conventions, captured rules, 
best practices knowledge and Microsoft Excel table links 
would be maintained by CATIA. We would not be required to 
maintain any external links or external knowledgebase 
interfaces since we didn’t built any outside. We also wanted 
the system to be quite general purpose and the chosen system 
architecture to be highly generic and reusable across different 
product lines that Parker manufactures.  In order to facilitate 
these requirements, we built two knowledge-based 
configurators 

 
 



                                                Copyright © 2005 by ASME 

 
 
Figure 7: How Product Solution is achieved from its 
decomposed SmartParts during reconstruction loop 
 

 A knowledge-based configurator for building the 
SmartPart from the rules and their corresponding part-
templates (both captured in CATIA V5) (see Figure 7.) 

 Another knowledge-based configurator for building the 
product solution. ProductConfigurator assembles a 
product solution from the set of decomposed constituents 
(called SmartParts). (See Figure 7.) 

 
The product development taxonomy described in section 4 is 
implemented via the rule-bodies in CATIA V5 
Knowledgeware tools. Three design tables are required to 
initiate a new design (a) a table to select bill-of-parts and 
appropriate materials, (b) a table to identify inputs, choose 
design loads and basic configuration, and (c) a table to specify 
the mating and assembly requirements for the SmartParts so 
configured. They are shown in Figure 8. 
 

Figure 8a: Bill-of-Parts and Materials Table. 
 
 
 
 
 
 

 
Figure 8b: Table to Specify Inputs, Select Design Loads and 
Basic Configuration Data. 
 

Figure 8c: Table to Specify Mating and Assembly Constraints 
Data. 

8.  RESULTS AND DISCUSSIONS 
Parker designs a variety of products which control various 
moving surfaces on airplanes like ailerons, tails, flaps and 
rudders. In order to demonstrate “how the knowledge-based 
system functions” we chose two families of actuator solutions: 
simplex and tandem. The system specs data commonly 
provided by airplane manufacturers generally provides a 
majority of data for the design of these actuators. A list of 
engineering specs data for tandem and simplex are shown in 
two columns of an Excel table in Figure 8. The bill-of-parts 
and constraints are unique for simplex and tandem solutions 
since the name of decomposed parts and mating constraints 
are different. Thus we provided a different set of inputs for 
each. 
 
The knowledge-based system engineering process architecture 
described in Sections 3-4 were employed. The 
ProductConfigurator ran through the SmartPart iteration 
cycles and provided us with a feasible solution in the end. 
At that point, we obtained a complete 3D solution in CATIA 
V5 for both the cases. The 3-D isometric views of the simplex 
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and tandem solutions and their cross-sections details are 
shown in Figure 9a and 9b, respectively (as examples).   

 

  

 

 
Figure 9a: Balanced simplex actuator with 3050 psi supply pressure and 3.89 inch stroke. 
 

 
 

 
Figure 9b: Unbalanced tandem actuator with 4100 psi supply pressure and 9.49 inch stroke. 
 
After checking through the calculations, we found that the 
final designs meet all load requirements, length constraints, 
and mating dimensions (including appropriate placements of 
O-rings based on computed ODs (outer diameters) for the 
moving parts). 

9.  CONCLUDING REMARKS 
A knowledge-based system-engineering process has been 
developed at Parker to realize new product families from only 
raw specifications and reusable smart templates. The pertinent 
characteristics of this development were realized by 
decomposing the product in question into two levels: a system 
level and a series of semi-independent SmartParts levels, so 
that the necessary intra-part communication of common 

parameters (requirements and constraints) is performed locally 
during each SmartPart solution. The number of common 
(interface) parameters were small since the dependency of the 
decomposed parts in the product breakdown structure, and the 
dependency while further decomposing each part into a set of 
three SmartPart templates were minimized. By organizing 
specifications into a single level SmartPart sets in parallel with 
product system specs helped us to minimize non-compliance. 
A two-level (consistent) taxonomy for controlling and bal-
ancing the flow of specifications (inputs, requirements, and 
constraints) throughout the product development process were 
used.  

In addition, we used a consistent naming convention for the 
template-parameters, so that they carry equal values if they 
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have identical assigned names.  This made passing the 
specification values from system specs to SmartParts specs 
and among templates of the SmartParts themselves a very 
trivial problem. We piped two or more processes so that the 
next process can start just after the first one is finished 
generating the required information for the next process (just-
in-time). This shifted the controls of the original product 
realization process to simply “managing the individual 
template-based SmartParts.” SmartParts methodology 
described earlier took care of local satisfaction of constraints 
and essential communications among the three intra-part 
tracks represented by those templates. Only what has been 
modified at system level or changed during a SmartParts 
sizing-level template solutions were exchanged across 
templates. The methodology allowed us to solve the 
decomposed SmartParts in parallel to each other—in no 
specific order.  
 
The result of this implementation has produced a 
tremendous savings in reusability of knowledge, reduced 
product lead time, reduced errors, quality improvements, and 
customer satisfaction. It has also helped us in driving down the 
costs of new product development.  

10.    ACKNOWLEDGEMENTS:  
Authors would like to thank Parker Hannifin, Aerospace 
Group for providing R&D funding. Thanks to the Control 
Systems Division personnel for giving their valuable time for 
mining their product and process knowledge in order to built a 
prototype system for configuring a Hydraulic Actuator. The 
concept developed in this paper is quite general and could be 
applied to any product, process or system. The theoretical 
basis was based on some of the authors’ prior works [Prasad 
76, 77]. However, its implementation using KBE is 
completely new and was never tried before. Authors would 
like to thank Mark Czaja, Matt Ivary, Glenn Zwicker, Glenn 
Kirkendall, and a number of close associates of the authors 
including Valori Zaffino, Brian Tims, Scott Leland, Hector 
Espinoza and Constante Manapsal.  Without their help, its 
successful implementation would not have been possible. 

11. REFERENCES 
1. Chen, B., and Menq, C.-H., 1992, “Initial Attempts 

On the Characterization of Functional Requirements 
of Mechanical Products,” PED-Vol. 59, Concurrent 
Engineering, ASME WAM, 1992, Anaheim, CA, pp. 
315-329. 

2. Deming, W.E., 1993,  The New Economics,  
Cambridge, MA, published by MIT Center for 
Advanced Engineering Study, November 1993. 

3. Finger, S., and Rinderle, J.R.,  1989, “A 
Transformational Approach to Mechanical Design 
Using A Bond Graph Grammar”, ASME DE-Vol. 17, 
Design Theory and Methodology -DTM ‘89, Edited 
by Elmaraghy, Seering and Ullman, ASME Ist Int’l 

Conference on Design Theory and Methodology, 
Montreal, Quebec, Canada, Sept. 17-21, pp. 107-116. 

4. Nielsen, E., 1990, “Designing Mechanical 
Components with Features”, Ph.D. Thesis, University 
of Massachusetts, Amherst, MA. 

5. Prasad, B., 1996, Concurrent Engineering 
Fundamentals: Integrated Product and Process 
Organization – Volume I, Prentice Hall PTR, Upper 
Saddle River, New Jersey. 

6. Prasad, B., 1997, Concurrent Engineering 
Fundamentals: Integrated Product a Development – 
Volume II, Prentice Hall PTR, Upper Saddle River, 
New Jersey. 

7. Prasad B., 1999, “Enabling principles of Concurrency 
and Simultaneity in Concurrent Engineering,” 
Artificial Intelligence for Engineering Design, 
Analysis and Manufacturing, Vol. 13, pp. 185–
204,Cambridge University Press 0890-0604099. 

 
8. Pugh, S., 1991, Total Design, Addison-Wesley 

Publishers, Wokingham, UK.  

9. Rogers, J. and Prasad, B. “Getting the Most Gains 
Out of Knowledge-based Engineering – Parker 
Aerospace Experiences”, 2004 Annual Conferences 
& TechniFair, April 25-28, Fontainebleau Hilton 
Resort, Miami Beach, Florida, 2004. 

10. Stauffer, L.A., and Slaughterbeck-Hyde, 1989, “The 
Nature of Constraints and Their Effect on Quality 
and Satisficing”,  ASME DE-Vol. 17, Design Theory 
and Methodology -DTM ‘89, Edited by Elmaraghy, 
Seering and Ullman, ASME Ist Int’l Conference on 
Design Theory and Methodology, Montreal, Quebec, 
Canada, Sept. 17-21, pp. 1-8. 

11. Suh, N.P., 1988, The Principles of Design, Oxford 
University Press, Oxford, UK. 

12. Szucs, E., 1980, “Similitude and Modeling”, Elsevier 
Scientific Publishing Company, 1980, pp. 42. 

13. Taylor, D.A., 1993, “Object-Oriented Technology - 
A Manger’s Guide”, Addison-Wesley Publishing 
Company, Reading, MA. 

14. Thompson, J.B., and Lu, S.C.-Y., 1989, 
“Representing and Using Design Rationale in 
Concurrent Product & Process Design”, in 
“Concurrent Product and Process Design”, ASME 
Winter Annual Meeting, San Francisco, California, 
DE-Vol. 21, PED- Vol. 36, Dec. 10-15. 

 


