
CONCURRENT ENGINEERING: Research and Applications

A Constraint-driven Execution Plan for Maximizing Concurrency
in Product Development

Jinmin Hu,1,* Jianxun Liu1 and Brian Prasad2

1CIT Lab, CS Department, Shanghai Jiao Tong University No. 1954, Huashan RD, Shanghai, 200030, China
2Spec2Market Solutions, P.O. Box 3882, Tustin, CA 92782, USA

Abstract: One of the major goals of Concurrent Product Development (CPD) is to shorten the design cycle time by increasing more task

overlaps of the ensuing design activities. Increasing task or activity overlap often hinges on two timing questions (a) ‘‘When does the

downstream activity require certain information from its upstream activities and (b) when will the required information on an activity be available

for scheduling the next dependent task ?’’ The paper discusses a constraint-driven execution plan to handle the concurrency during scheduling

of various dependent tasks. This constraint-driven execution plan is designed to relieve the alignments of start and end points commonly

encountered during scheduling of the concurrent tasks. It is not essential that an activity will start only when a dependent activity is fully

finished. In constraint-driven execution plan, a task or an activity can be initiated as soon as the required information is available rather than

after the completion of all the upstream activities dependent on it. The paper shows that if we follow this execution plan during a CPD process,

concurrencies among the ensuing design activities can be maximized. The paper also discusses how this execution plan can be used in a

context of a workflow management system (WfMS). Employing this plan, it is possible to easily transform most of the event-condition-action

(ECA) rules-based workflow model – from its activity completion event-driven forms – into an information-constraint-satisfaction-driven forms.

This execution plan, thus, enables an event-driven WfMs to support concurrency of tasks during product development and concurrent tasks’

scheduling.

Key Words: Concurrent Engineering, Concurrent Product Development, Information Constraint, Workflow Management System, ECA Rules.

1. Introduction

In order for companies to win the time-based com-
petition, most enterprises need to introduce new com-
petitive product quickly and consistently, to the global
marketplace. New product development is becoming an
essential requirement to maintain a high degree of
competitiveness. In order to support such goals, many
companies have used and are using Concurrent
Engineering (CE) techniques to support fast, less
costly, and improved quality in product development.
The most important goal of concurrent product devel-
opment (CPD) is to shorten product development cycle
time. To reach this goal, there are several different
approaches to implementing CE and reducing time
during CPD. Very often, some kinds of information
management systems are generally built around CAD
systems to manage the product content and design model
information [3]. In addition, some information systems
known as PDM systems are often employed to provide
information sharing and to facilitate cooperative design.
To reduce or eliminate engineering changes and rede-
signs, DFX (Design For Manufacturing, Assembly and
etc.) methods and analysis tools are generally used to

account for the manufacturing and assembly process in

the early product design and development phase [9].

However, to shorten the entire time-to-market in prod-

uct development, the life-cycle process needs to be

carefully planned and managed.

A design process of a complex product is very

complicated due to the presence of various types of

constraints. The constraints can be present as restric-

tions on time, as relations on product geometric

structure, or in the form of design or manufacturing

specifications. Depending on the impacts they inflict,

they are called as information constraints, resources

constraints, and so on. Information constraints are

imposed on the design activities to identify start and

end timing points so as to align them concurrently.

Because of their inherent time dependencies, it is often

difficult to independently carry out some activities

without the help of others. The idea of information

constraints is to make the start and end points of each

activity and their time dependencies visible. Thus,

during job scheduling, when the information constraints

are specified on associated tasks, such activities are

carried out in an appropriate order maintaining the

needs for information transfer among the associated

tasks at appropriate time points. Chaining of activities

in this manner is called herein as ‘‘execution plan.’’*Author to whom correspondence should be addressed.

Volume 11 Number 4 December 2003 301
1063-293X/03/04 0301–12 $10.00/0 DOI: 10.1177/1063293X03038568

� 2003 Sage Publications

www.sagepublications.com

There are many ways to create such execution
plans. Some execution plans are better than others.
In CE, it is important that tasks are scheduled concur-
rently. One way to achieve these objectives is by forcing
all the constraints imposed on an activity to be fulfilled
prior to the start of this activity. Will this be a good
plan ? The authors have found that a better plan can be
devised by permitting information constraint insertions
to take place at intermediate time points, other than
the start and end time points of an activity.
This paper mainly discusses the information con-

straint in product development life-cycle activities.
Within a product development (say a life-cycle) process,
usually, downstream activities require information; say
for example, some design parameters form a set of
upstream activities. Typically, during a life-cycle pro-
cess, the downstream activity cannot be started before
all the upstream activities are completely finished. But
the fact is that this type of information constraint is
often too limiting in meeting the overall project goal.
The idea proposed in this paper is to initiate an activity
as soon as possible even when only partial constraint on
an activity is satisfied. The essence of this idea stems
from the fact that more time overlaps of the design
activities reduce the overall completion time. In reality,
every design activity within a life-cycle process need not
start only when a prior activity is finished. The
constraints imposed on these activities only at ‘‘start
and end points’’ are often too restrictive from timing
aspect. The authors have found that including
intermediate time points in addition to start and end
points of an activity, while applying information
constraints, is the major force to increase the degree
of concurrencies. When time restrictions on the
constraints are relaxed from start and end points to
include additional intermediate timing points, it does
significantly alter the resulting execution plan. One
then considers the dependencies of a set not with respect
to its terminal points (at the beginning or start of an
activity) but with respect to what would be an optimal
timing to launch a next set of activities when the first
set is not even fully completed. However, in considering
such options, the degree of concurrency in the execution
plan is significantly increased and the time of comple-
tion is accordingly reduced. By considering more
intermediate time points and strategically scheduling
activities by satisfying information constraints at
those points, it can result into a better execution plan.
Better in the sense that as soon as the associated
information constraints are satisfied on each of the
chained activities in the execution set, it is possible to
maximize the degree of concurrency and significantly
reduce the clock time for CPD.
There has been a lot of research on product devel-

opment process (re-) engineering and product devel-
opment project management. However, little research

attention has been focused on the process of managing
execution of an activity set. Project enactment and
managing activity execution is very important to the
success of any CE implementation. Workflow technol-
ogy has already been proven to implement successfully
business process management or other process-oriented
project management [1,2,14]. Many researchers used
workflow management system (WfMS) to support
development project management as well [10,13].
In this paper, authors have used a workflow man-
agement system to help develop a better plan for
concurrency and manage the execution of the ensuing
design activities. The resulting workflow execution
is driven by the satisfactions of the information
constraints on the associated activity set.

The rest of the paper proceeds as follows. Section 2
briefly introduces some related work, especially, some
activity dependency analysis approaches. Section 3
presents the concept of task overlapping and infor-
mation constraint within concurrent product design
context. The information constraint-driven workflow
execution semantics is proposed and compared to the
common workflow execution semantics by using mea-
sure of concurrency (MOC). Section 4 extends the
ECA-based workflow model to support the constraint-
driven semantics. Attempt is also made to extend the
existing workflow system architecture by adding
constraint management and by creating modules to
support the extended ECA rules. The last section of this
paper deals with discussion and conclusion.

2. Related Work

There are several approaches to modeling life-cycle
processes and analyzing activity dependencies in prod-
uct development and project management. The Program
Evaluation Review Technique (PERT) and the Critical
Path Method (CPM) [15] are some popular approaches
to modeling life-cycle process and managing integrated
product development (IPD) project. Steward [16,17]
developed a design structure matrix (DSM) as a tool to
represent and analyze activity dependencies of a design
project. The DSM is a binary square matrix with m
rows and columns, and n non-zero elements, where m
is the number of design activities and n is the number
of information flows (or dependencies) going from
one design activity to the other. If there exists an
information dependency from activity i to j, then the
value of element ij (column i, row j) is unity (or marked
with an X). Otherwise, the value of the element is zero
(or left empty). Eppinger [4] used DSM concept to
describe the information flows of a project rather than
concurrent scheduling its workflows. It did not address
the question: ‘‘What information does one need from
other activities before one can complete the current

302 J. HU ET AL.

activity at hand ?’’ Since then, many authors [18,21]
have explained how DSM concept works and how to use
it to make life-cycle processes more efficient. However,
these works did not consider partial overlap as a
solution to exploit activity dependencies while schedul-
ing workflow. Partial overlap forces one to consider
timings of information release and insertion points
during a life-cycle process for a product development.

Krishnan [11] presented a model-based framework to
manage the overlapping of coupled product development
activities. It addressed two questions: (a) how early an
upstream information set could be finalized and (b)
under what conditions could preliminary information of
upstream action be useful for downstream action. But,
their overlapping model did not extend to multiple
activities or concurrencies. In fact, their theory of
overlapping activities is a complement to this work, as
it can be used to estimate when the upstream activities
can provide the information to a downstream activity.

Today, WfMS is very popular to support information
or data flow during project management [8,10,13].
Nevertheless, increasing concurrencies of tasks/activities
during a workflow execution is still a research problem.
Most existing workflow execution plans, reported so far,
is based on the ‘‘control flow’’ but not on timing of
‘‘data flow across various activities’’ or their subsets. In
other words, they are event-driven but not information-
constrained or time-driven. A concurrent-constraint-
satisfaction process during a workflow is studied in this
paper. This paper will show how to extend the current
workflow model to include concurrent data flow, how to
satisfy information constraints at intermediate points
along a path of an activity set, and how to implement a
constraint-driven execution plan semantics.

3. Information Constraint and Execution
Plan Semantics

3.1 Concepts of Activity Dependency
Based on Information

Concurrent engineering is a process where infor-
mation from different domains (related to a product
development life cycle, including design and manufac-
turing) needs to be passed along onto each other
and to the associated workgroups that manage the
process. Such types of information, where one activity
is dependent on other, are characterized herein as sets of
‘‘information constraints.’’ Similar definitions have been
used in the past. For instance, topological attributes of a
specific form feature were represented as constraints
from process planning point of view; similarly a
product-targeted cost is another constraint [6] used in
product and portfolio planning. Besides satisfying
dependencies among its constituent activities, such

constraints also provide a foundation for requirement
specification in a product development process.
Constraints also state the dependencies on activities
and associated execution plan in a workflow.

The constraints, discussed in this paper, are the
information constraints imposed for the concurrent
execution of the design activities in a workflow.
Information constraint is one of the major constraints
that directly impact how a series of activity will be
executed, which in turn determines what degree of
concurrency one can achieve using this plan. Another
common constraint used in a workflow resource con-
straint. In this paper, we will be discussing information
constraints mainly. Information constraint is defined
here as a statement of time dependencies among
activities of a CPD process. Time dependencies can be
generated from any type of constraints, but information
constraints provide a level of dependency, which is not
generally found in a typical design process except
those based on concurrent product development.

Definition 1 (require information). If an execution
plan of an activity ‘‘A’’ needs information x, then a
binary relation can be written as require (A, x). It means
that activity A requires information x.

Definition 2 (release information). If an execution of
an activity ‘‘A’’ releases information x, then a binary
relation can be written as release (A, x). It means that
information x is released by activity A.

Definition 3 (activity dependency based on information).
If an activity A2 requires information x, which in turn,
is released from Activity A1, in other words, if there is
an information dependency between activity A1 and
A2, then a relation can be written as depends_on_for
(A2, A1, x). It means the execution of A2 depends on
the execution of A1 because of information constraint x.
A1 releases x and A2 requires it.

Proposition 1 Require (A2, x) ^ Release (A1, x)!
depends_on_for (A2, A1, x).

3.2 Modes of Concurrency

Product development process is a process of gradually
building up the right information and linking up the
process activities with required personnel skills so that
the project can be finished in time. However, it takes
time to gradually build-up the information in a form
that can be readily used by any skilled team member.
Overlapping staggers these resources so that they are
ready when information is complete and available in the
form to be used. It would be a waste of resources if skills
are available but the information is incomplete. There
are three distinct possibilities in which a build-up and a
transfer of information can take place. Prasad [20]

Execution Plan for Maximizing Concurrency in Product Development 303

has shown the following three forms of overlapping
in CPD.

. No Overlap: There is no overlap; information is
gradually ramp-up for an activity until it is complete,
then it is transferred to the next activity where it is
used to build up a new grade of information to
support subsequent activities. This is called series
transfer and the resulting process is called sequential
process. It is suitable when the two activities are
dependent, that is, information from one activity is
required to support the second activity.

. Partial Overlap: The transfer of information takes
place during a build-up of an activity, when infor-
mation ramp-up is only partially complete. A series
of interactive transfer continues to take place until
the information ramp-up is fully complete. At that
point the information transfer from one activity
ceases but the information build-up for the second
activity continues. This is suitable for activities that
are semidependent. The degree of transfer depends
upon the degree of independence. If the two activities
are completely independent, there is no transfer. If
not, coupling is preserved and there may be a series of
transfers. The resulting process is called ‘‘parallel
process.’’

. Complete (100%) Overlap: If the coupling between
upstream and downstream activities can be removed,
the two activities can start at once and run simulta-
neously. A series of interactive transfer may take
place while the information is being ramped-up on
each side. This is suitable when the two activities are
independent. This type of parallel overlap is called
mutual and the resulting process is called simulta-
neous process. A supplementary overlap is when a
series of transfers between two parallel activities
takes place to supplement the start (an information
ramp-up) of a third activity.

The suitability of one or the other forms of overlaps
depends upon:

(a) Whether or not there is a dependency between the
activities

(b) How can one activity provide enough information
for a second activity to get started early;

(c) Whether or not pertinent skills are freed-up or
available, and

(d) Whether or not an activity is on a critical path.
Without the overlap more time is needed since:

(i) Supplied information may not be in the right
format

(ii) May not have the right content (as in the case
of an information ramp-up) and,

(iii) More time is needed to digest the information
supplied. With some overlap, the time to
completion can be significantly reduced.

3.3 Measure of Concurrency (MOC)

Before we analyze the concurrency of different
execution semantics, let us define some concepts and
equations to use for concurrency analysis. Prasad [12]
defined a MOC and a related theory for CPD. He
proposed seven principles to increase concurrency
for product design based on his MOC theory. In this
paper, we have adapted some of his MOC concepts
and related equations – as reported in the AIEDAM
paper [12].

Given an activity set:

A-set � ½a1, a2, a3, . . . , ai, aj , ajþ1, . . . , an�, ð1Þ

where ai is the ith activity.
Let us also denote:

tsi as the start time, the time when an ith activity,

ai, starts;

tei as the end time, the time when an ith activity,

ai, ends:

ð2Þ

Then, duration of an ith activity, also called the lead-
time, di, can be expressed as:

di ¼ tei � tsi ð3Þ

We can arrange the A-set as a precedent A-set, which
satisfies:

For any ai and aj: If tsi < tsj, then i < j;

And, if tsi ¼ tsj and tei ¼ tej, then i < j
ð4Þ

Now, we denote ci as the ‘‘MOC’’ between any two
consecutive activities, ai and aiþ 1 the MOC or overlap
can be expressed as follows:

ci ¼ 1� ðtsi � tsi�1Þ=di�1, ð5Þ

where di� 1 is the duration of an activity ai� 1. Using
Equation (3), di� 1 can be expressed as

di�1 ¼ ðtei�1 � tsi�1Þ ð6Þ

If Ti is the clock time of an ith activity. The clock time is
the time an ith activity, ai, takes from start (t¼ 0) to its
finish. Following this definition, then T1,T2,T3, . . . ,Tn,
can be expressed as

T1 ¼ d1,

T2 ¼ fd2 þ d1 � ð1� c2Þg,

T3 ¼ fd3 þ d1 � ð1� c2Þ þ d2 � ð1� c3Þg,

Tk ¼ fdk þ d1 � ð1� c2Þ þ d2 � ð1� c3Þ

þ � � � þ dk�1 � ð1� ckÞg

ð7Þ

304 J. HU ET AL.

Tn ¼ dn þ
Xn�1

i¼1

di � ð1� ciþ1Þ ð8Þ

The Equations (7) and (8) provide a basis for computing
the total product development time, Tk. In the following
sections, we will use the aforementioned equations to
analyze the concurrencies and compute the lead time of
the whole life-cycle process in different execution
semantics.

3.4 Common Execution Plan Semantics

There are many commonly-used semantics of a

constraint-driven execution plan. Figure 1 shows an

example of a typical product development process.

Irrespective of a particular semantics employed for

its representation, it contains seven design activities. The

bubbles S and E are dummy activities, which seperately

represent the start and the end points of the process.

Following the common execution semantics of DAG:

(Direct A-Cyclic Graph) based process model, the

arrowed edges and rectangular blocks in Figure 1 are

drawn to represent an execution plan. The ‘‘execution

plan’’ direction is used herein to indicate that only after

the set of upstream activities is finished, the downstream

activity set can be started. Also shown in the figure, are

the variables xi or yi placed on the arrowed edges. The

variables represent the information dependencies

between these activities. The xi or yi marked on the

edge is the information that is released by the upstream

activity(s) and is required by the downstream activity(s).

In the scope of the workflow technology, these

information are called workflow relevant data [23].

Here, besides the workflow relevant data used by

workflow engine, the dependency information among

the design activities are also included. The dependency

in this case is often represented by application data

required by some activity(s) and generated by other

activities. Such design results are commonly stored in a

PDM system.

According to our definitions in Section 2.1, the

dependency of the DAG-based process model, shown

in Figure 1, can be transformed into the following seven

dependency relations:

depends_on_for (A4, A1, x1);

depends_on_for (A4, A3, x3);
depends_on_for (A5, A2, x2);
depends_on_for (A5, A4, x4);
depends_on_for (A6, A4, y4);
depends_on_for (A7, A5, x5);
depends_on_for (A7, A6, x6);

The durations of each activity shown in Figure 1 are
given in Table 1. The activity durations are usually set
by the project managers (through estimating) during
planning of the design process. A list of activity
durations for this example is separately given in Table 1.
They are also shown in Figure 2 pictorially – to be used
in discussing concurrency and in computing total time
for completion.

The common execution semantics of DAG-based
process model is that ‘‘activity B cannot be started until
activity A is completed if there exists a dependency of B
on A.’’ Such a dependency relation is expressed as
depends_on_for (B, A, x). Based on this semantics and
the process graph shown in Figure 1, the following
conclusions can be drawn:

(a) A1, A2, and A3, can be initially started and executed
simulaneously (tsi¼ 0; i¼ 1,2,3);

(b) A4 cannot be started until A1 is finished;
(c) A5 cannot be executed until A2 is finished;
(d) A6 cannot be started until A4 is finished.
(e) A7 can be started only after both A5 and A6 are

completed.

By following this execution semantics, an activity
execution plan of the process is shown in Figure 3 as
Execution Plan (1).

The activity duration of Ai, di, the MOCs and Ti for
execution plan (1) are shown in Table 2.

From Table 1, we can see that only A1, A2, A3 are
executed concurrently and the whole cycle for this
process is T7¼ 28 (tus, time units). However, if we
accurately analyze the information dependencies among
these activities – not based on the assumptions that
the information required and released only occurs

E

A1

A3 A4

A2 A5

x1

x3

x2

x4

y4
A6

A7
x5

x6

S

Figure 1. A 7-activity process diagram – showing activity dependencies and constraint variables.

Table 1. Activity’s lead time.

Ai A1 A2 A3 A4 A5 A6 A7

di 2 4 8 7 9 2 4

Execution Plan for Maximizing Concurrency in Product Development 305

at the begining of an activity or its end – we will find

that this execution cycle can be shortened dramatically.

The following section discusses how to make more

partial overlaps possible.

3.5 Information Constraint-driven
Execution Semantics

To shorten the design cycle, authors have focused

here on another question about design information,

which is different from Eppinger’s [4]. The two questions

are: ‘‘When does the activity actually require the

information generated by its upstream activities’’ and

‘‘when will the required information be available for

the activity to use ?’’ To answer both questions, one

should analyze the information dependencies not

just based on two terminal points, which occurs at

the beginning of an activity or at the end but based

on other insertion points, which may occur at

intermediate time points. Some design activities cannot

be partially overlapped because we made an assump-

tion that when a latter activity starts the former

must end. Information constraints imposed on such

activities due to dependencies are too strict from timing

perspective. For example, when design activity B

requires information x generated by activity A, one

always thinks that activity B cannot be started before

activity A is finished – by following the common

execution semantics. However, to accurately analyze

such dependencies, and impose a better set of

A3(1,2,3)

A1(1,2,3)

A2(1,2,3)

t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A4(1)

A5(1)

A7(1)

x3

x1

x3

x4
y4

x2
x4

y4
x6

result

x5

x5 x6

A4(2)
x4 y4

x3

A5(2,3)

x2 x4

A6(2,3)
y4

x6

result

x5 x6

Execution
Plan (1)

Waiting phase

x1

A6(1)

A7(2,3)

x5 x1

A4(3)

x3

y4 x4

Execution
Plan (2)

Execution
Plan (3)

t

x1

x2

Figure 3. Activity execution following two different execution semantics. Execution Plan (1) –Traditional execution semantics; Execution Plan
(2) – Constraint-driven semantics. Execution Plan (3) – Waiting phase in Execution plan (2) eliminated.

t 0 1 2 3 4 5 6 7 8 9 10 11

A3

A2

A4

A5

A6

A7

x2

x3

x1 x3

x4
y4

x2 x4

y4

x6

result

A1

x5

x5 x6

x1

Figure 2. Activity lead-time and the individual relative time points of
information required and released.

306 J. HU ET AL.

information constraints on overlapping activities, the
following questions must be asked:

. When does activity A release information x?

. When does activity B require this information x?

If x is released by activity A not at the end (when
activity A is finished) and if activity B requires x not
at the start of the process when Activity B is launched,
can we overlap part of the execution of these two
activities? Hence, through accurate analysis of timing
points in an execution plan, better concurrencies of
activities can be attained.

Figure 2 specifies the relative estimated time points
when the information required and released. The arrow
with the variable xi(yi) above the activity execution barAi

represents the information required by Ai; the arrow
with the variable xi(yi) below the activity execution barAi

represents the information released by Ai. The time
points given are related to the time point of the start
of individual activity. For example, as shown in Figure 2,
information x1 is required by A4 as soon as A4 is started
to execute; x3 is also required by A4 but at the time
point (4 tus, time units) after it is started; A4 generates x4
at the time point (4 tus) after it was started and y4
in the end of the execution (7 tus). So, if we need to
consider the time of the information required or released
by an activity, we got to extend the definitions given in
Section 2.1.

Definition 4 (require information at t). If A is an activity
then Relation require (A, x, t) represents that execution of
activity A requires information x at intermediate time t.

Definition 5 (release information at t). If A is the same
activity, Relation release (A, x, t) represents that
execution of activity A generates information x at
intermediate time t.

Definition 6 (information constraint). Applied in between
two activities (A1, A2): if A2, requires information x at
time point treq and if A1 releases information x at time trel
then there exist (from Definitions 4 and 5) two relations:
require (A2, x, treq) and release (A1, x, trel). It means
information constraint on activity A2 from A1, can be
written as constraint (A2, A1, x, treq, trel).

Definition 7 (constraint satisfactions). If an information
constraint (A2, A1, x, treq, trel) is satisfied, iff exists

require (A2, x, treq), release (A1, x, trel) and treq� trel. A2

and A1 is partially overlapped in such a way that
intermediate time points of A2 treq and trel. of A1 do not
normally occur at the beginning or at the end of
activities (A2, A1).

According to Definition 6, the information con-

straints imposed on the activities shown in Figure 2

are listed in Table 3. There are two information

constraints imposed on activity A4, two on A5, one on

A6 and two on A7, but no constraint on A1, A2, and A3.

To shorten the design cycle, the idea proposed here is

to increase the time overlaps of the activity set in the

execution plan so that information constraints are

satisfied as early as possible during the time-driven

workflow process. The time-driven execution plan

semantic is to start an activity when a prior activity is

partially finished in order to provide the required

information for this activity to proceed. It is not

essential to wait for the prior activity to be completely

finished. In this scenario, information constraints can be

applied at any execution point from timing perspective:

at start point, intermediate points, or at end point of

an activity.

Considering the information constraints shown in

Table 3, the following inferences can be drawn:

(a) A1, A2, and A3 can be started to execute simulta-
neously (complete overlap – MOC¼ 1), when the
process is started (as shown in Figure 2, t¼ 0);

(b) A4 can be started to execute as soon as A1 is finished
since constraint (A4, A1, x1, S(A4), E(A1)) is satisfied
at that moment (t¼ 2), which is different from the
common execution semantics.

(c) Following the common execution semantics, A4 need
to wait another 4 (tus) for the completion of A2

(t¼ 8). Hence, following the constraint driven execu-
tion semantics (execution plan (2)), A4 is started 4
(tus) earlier than following the common execution
semantics (execution plan (1)).

The workflow execution plan based on the infor-

mation constraint semantics is presented as execution

plan (2) in Figure 3. From Figure 3, we can find that A4

is paused in the middle of the execution (where, t¼ 6)

because the second constraint constraint (A4, A1, x2,

S(A4)þ 4, E(A2)) is not satisfied at that moment (t¼ 6).

Table 2. The di, MOCs, and Ti for execution plan (1).

ai a1(A1) A2(A2) a3(A3) a4(A4) a5(A6) a6(A5) a7(A7)
di 2 4 8 7 2 9 4
tsi 0 0 0 8 15 15 24
ci¼1� (tsi� tsi�1)/di�1 – 1 1 0 0 1 0
Ti 2 4 8 15 17 24 28

ai is ith activity in the arranged A-set which satisfies Equation (4). Ai denotes the activity Ai shown in Figure 1. In the rearranged A-set,
A6 is in the 5th position and A5 is in the 6th position.

Execution Plan for Maximizing Concurrency in Product Development 307

So, A4 needs to wait 2 (tus) until information x2
becomes available. This means the activity duration of
A4 is prolonged 2 (tus).

Table 4 shows the di (lead time), MOCs, and Ti for the
execution plan (2). Through comparing the execution
plan (1) and (2) by comparing Table 4 and Table 2, we

can find that, the whole execution cycle is shortened 11
(¼ 28� 17) (tus) by following the information constraint

driven execution semantics. This is a dramatic improve-
ment. The benefits come from the time alignments using

overlaps among A4 and A2 and A5 and A4. In Execution
plan (2), A4 is started 4 (tus) earlier and A5 11 (tus)

earlier. However, this introduces some side effects: A4

are paused for 2 (tus) in the middle of the execution,
that is the lead time for A4 is prolonged from 7 (tus) to

9 (tus).
If you are not allowed to pause an activity in the

middle of its execution, rearranging the activity
execution could eliminate the waiting phase. In this

example, to eliminate the waiting phases of the
execution for A4, A4 should be started at t¼ 4 rather

than at t¼ 2. This corresponds to execution plan (3) as
shown in Figure 3. The di, MOCs, and Ti for execution
plan (3) are shown in Table 5. From Tables 4 and 5, we

can see that the total time it takes to finish the execution

plan (3) is still the same as execution plan (2), that is

17 (tus).

In this paper, a constraint monitoring process is

proposed to deploy the information constraints

during an execution plan. Such a monitoring pro-

cess can also be used to control the timing points

(start and end points) of an activity while aligning

and scheduling the related constraint satisfaction events.

For example, to eliminate the waiting phase, the

monitor can delay the event dispatching even when a

constraint is satisfied. We will discuss this in the

following section.

4. Constraint-driven Workflow

4.1 Rule-based Workflow Model

Workflow technology is a key technology to support

process execution and management. A workflow system

automates a workgroup process and enables informa-

tion and activity to be routed among the participants.

A collection of these rules is called process definition or

workflow model. Usually, besides describing sequence

of the activity executions, a workflow model concerns

other aspects, including Roles, Workflow Relevant

Data, and so on. The Workflow Management

Coalition (WfMC) has established some workflow-

related standards including workflow meta-model and

Workflow Process Definition Language WPDL [24].

Many researches and systems use event driven

mechanism to support workflow execution. Hence,

Event-Condition-Action (ECA) rule is widely used as

the description of activity execution sequence [5,7]. The

form of an ECA rule is shown as Figure 4. When Event

e occurs, if the Condition c is satisfied then the Action

a is taken. The execution sequence of the activities,

Table 4. The di, MOCs, and Ti for execution (2).

ai a1(A1) a2(A2) a3(A3) a4(A4) a5(A5) a6(A6) a7(A7)
di 2 4 8 9 9 2 4
tsi 0 0 0 2 4 11 13
ci¼1� (tsi� tsi� 1)/di�1 – 1 1 3/4 7/9 2/9 0
Ti 2 4 8 11 13 13 17

ai is ith activity in the arranged A-set which satisfies Equation (4). Ai denotes the activity Ai shown in Figure 1.

Table 5. The di, MOCs, and Ti for execution plan (3).

ai A1(A1) a2(A2) a3(A3) A4(A4) a5(A5) a6(A6) a7(A7)
di 2 4 8 7 9 2 4
tsi 0 0 0 4 4 11 13
ci¼1� (tsi� tsi� 1)/di�1 – 1 1 3/4 1 2/9 0
Ti 2 4 8 11 13 13 17

ai is ith activity in the arranged A-set which satisfies Equation (4). Ai denotes an activity shown in Figure 1.

Table 3. Information constraints for process shown
in Figure 1.

Activity Information Constraints

A1 NULL
A2 NULL
A3 NULL
A4 (A4, A1, x1, S(A4), E(A1)); (A4,A3, x3, S(A4)þ 4, E(A3))
A5 (A5, A2, x2, S(A5), E(A2)); (A5, A4, x4, S(A5)þ3, S(A4)þ 4)
A6 (A6, A4, y4, S(A6), E(A4))
A7 (A7, A5, x5, S(A7), E(A5)); (A7, A6, x6, S(A7), E(A6))

NULL denotes no information constraint on the activity; S(A) denotes the start
time point of activity A. And E(A) denotes the end time point of an activity A.

308 J. HU ET AL.

shown in Figure 1, can be described as a couple of ECA

rules shown in Table 6.

The ECA rules, shown in Table 6, represent the

activity execution sequences following the typical

(common) workflow execution semantic as execution

plan (1) discussed above. The related information

dependencies among these activities are not represented

by these rules. In fact, the ECA rules describe only the

control flow but not the data flow. The constraints

imposed by these ECA rules do guarantee that the

inherent information constraints will be satisfied, but

they are often too restrictive. As we have discussed

above, it is not possible to exploit a higher level of

execution concurrencies due to partial overlaps by

following this execution semantics.

To support information constraint-driven execution

semantics, it is important that we reformulate the

ECA rules to contain the information constraints.

However, it is not good to change the form of the

rules that describe a workflow. Otherwise, the rule

interpreter implemented within a workflow engine needs

to be reconstructed, which in turn, may be difficult to

implement in most existing workflow management

systems. In order to keep the workflow engine

unchanged, one simple solution is to add a new event

type called SAT(A) to the current ECA based workflow

model. Event SAT(A) means all the information

constraints imposed on Activity A can be satisfied

based on the time estimation in an execution plan

if the activity is started when this SAT(A) event
occurrence. A SAT(A) event is an event to initiate an
activity execution. In fact it can also be viewed as a
schedule event. Event SAT(A) can be created and sent
by a constraint monitor. The latter will be discussed
in the following section. When a SAT(A) event is
created and sent, it means that some partial information
constraints has been already satisfied. The remaining
information constraints are considered to be satisfied
without delays in accordance with the time estimations.
So, for the constraint monitor, one of its functionality
is to find the appropriate time point to initiate the
activity A, that is, release the SAT(A) event.

For example, referring to execution plan (3), shown in
Figure 3, we will discuss how to determine the time point
for starting activity A4 as shown in Table 3. There are
two constraints on activity A4, which are:

C41 : constraint (A4, A1, x1, S(A4), E(A1))
C42 : constraint (A4, A2, x2, S(A4)þ 4, E(A2))

Constraint C41 denotes that, to start activity A4,
information x1 must be available, which means C41

must be satisfied because information x1 is needed at
the starting point S(A4). So, C41 is the initial infor-
mation constraint, but C42 is not. However, the selec-
tion of time point S(A4) must ensure that C42 will
be satisfied without waiting for information x2 in
the middle of activity execution. The problem to
find such a starting time point for activity A4 under
these two constraints can be represented mathemati-
cally as:

Minimize SðA4Þ

Subject to SðA4Þ � EðA1Þ
ð9Þ

SðA4Þ þ 4 � EðA2Þ ð10Þ

According to Equation (9), the minimize S(A4) should
be E(A1) (t¼ 2), but according to Equation (10), to
eliminate the waiting phase for information x2, it is
better that activity A is started at t¼ 4 (¼E(A2)� 4¼
8� 4¼ 4). Hence, we can find that it is a Constraint
Satisfaction Problem (CSP) to determine a time point
for starting an activity A, which can be formulated as:

Minimize : SðA4Þ

s:t:8c2CðAÞ, treq, trel2 c9treq � trel

ðCðAÞ is the information constraint set of activity AÞ

ð11Þ

By adding the new event type SAT(A), some ECA
rules can be changed to the new ones to support the
constraint-driven execution semantics. By considering
the constraints on activity A4, shown in Table 3, Rule 2
shown in Table 6 is rewritten as rule 2 in Table 7.

Table 6. ECA rules.

Rule 1 ON Event S
DO Action ST(A1); ST(A2); ST(A3)

Rule 2 ON Event END(A1) AND END(A3)
WITH NOT IsNull(x1) AND NOT IsNull(x3)
DO Action ST(A4)

Rule 3 ON Event END(A2) AND END(A4)
WITH NOT IsNull(x2) AND NOT IsNull(x4)
DO Action ST(A5)

Rule 4 ON Event END(A4)
WITH NOT IsNull(y4)
DO Action ST(A6)

Rule 5 ON Event END(A5) AND END(A6)
WITH NOT IsNull(x5) AND NOT IsNull(x6)
DO Action ST(A7)

Event S means the event of starting the process, END(A)
denotes the event of the completion of activity A. Action ST(A)
means start to execute A. IsNull(x) is a built-in function to
check whether the variable x is NULL to guarantee it is valid.

ON Event e
WITH Con c
 DO Action a

Figure 4. ECA form.

Execution Plan for Maximizing Concurrency in Product Development 309

The event field END(A1) AND END(A2) is changed
into SAT(A4). One will argue that it is not necessary to
change the composite event END(A1) AND END(A2)
to SAT(A4) since both x1 and x2 are released in the end
of the executions of A1 and A2 separately. In a sense, it is
right. But, to eliminate the waiting phase, A4 is not
started when x1 is released or A1 is completed, but 2
(tus) after that. Traditional workflow engine cannot
control the occurrence of events. However, through the
constraint monitor, the occurrence of event SAT(A4)
can be controlled since all SAT(A) events are created
and sent by the constraint monitor rather than workflow
engine or workflow client application.
One can rewrite other ECA rules shown in Table 6 by

following the same idea used earlier to change Rule 2.
But, not all the rules are needed to be changed. In fact,

. Only Rules 2 and 3, shown in Table 6, need to be
rewritten, which are shown in Table 7.

. It is not necessary to change Rule 1 since no
information constraint is related to Rule 1.

. For Rule 4, no change needed because only an
information constraint is imposed on A6 and it can be
satisfied only when END (A4) occurs. Event END
(A4) is the same as SAT(A4).

. For Rule 5, for the same reason as Rule 4, no change
is needed.

So, what conclusion can be drawn about determining
which ECA rules should be changed? The answer is:

Proposition 2 Only when there exists an activity infor-
mation constraint (A, A1, x, treq, trel) imposed on
activity A where treq 6¼S(A) or trel 6¼E(A1), the corre-
sponding ECA rule which specify the start action of
activity A has to be changed.

4.2 System Architecture

The workflow system architecture that supports the
information constraint-driven execution semantics is
shown in Figure 5. This architecture is extended from
WfMC workflow reference model [22] and common
ECA-based workflow system architecture.
The project management tool is used to set up the

project and make the process execution plan, including
activity sequences, activity duration estimation, activity
dependencies and so on. An example of this tool is
Microsoft Project.

The workflow-modeling tool imports the project
model and adds additional information to make the
process executable. For example, roles, resources, and
the application information required to execute the acti-
vities are assigned to the activities in workflow modeling
phase. In order to support constraint-driven workflow
execution semantics, the information constraints and the
time points – the activities require or release them –
should be specified in the workflow model. ECA rule-
based workflow definition can be generated from the
graph-based workflow-modeling tool.

The constraint manager will extract the information
constraints from the workflow definition according to
the activity dependencies and the specified information;
especially the information required and released setting.
The constraint manager manages these information
constraints and rewrites the related ECA rules by
using the method we presented above.

The workflow engine enacts the ECA rules after
the workflow model is instanced. The event manager,
which is an important part of the engine, receives
the ‘‘END(A)’’ events from the client applications or
workflow engine itself as well as the ‘‘SAT(A)’’ events
from the constraint monitor. The interpreter, the core
of the workflow engine uses the events to interpret the
ECA rules and to initiate the execution of the activities.

During workflow execution, an activity can be
executed by a client or a server application. The
client application (or a workflow engine) updates
(including release) the workflow relevant data
(including activity sharing information). The constraint

Constraint
manager

Workflow
Relevant data

Project
Management tool

Workflow
modeling tool

Information
constraints

Workflow
 Engine

Client & other
applications

Rule based
Workflow model

Constraint
monitor

Interpreter

Event manager

Figure 5. Constraint-driven workflow system architecture.

Table 7. Rewritten ECA rules for Rules 2 and 3.

Rule 2 ON Event SAT (A4)
WITH NOT IsNull (x1)
DO Action ST (A4)

Rule 3 ON Event SAT (A5)
WITH NOT IsNull (x2)
DO Action ST (A5)

310 J. HU ET AL.

monitor monitors this updated information. When some
related information is released (not all update opera-
tions are ‘‘release’’ operations), the constraint monitor
checks the information constraints that are related to
the released information. The related constraints are set
to be satisfied, if the required information is already
available. The constraint monitor will calculate all
the information constraints imposed on this related
activity and determines whether it is time to release a
‘‘SAT(A)’’ event and send it to the workflow engine
to initiate this related activity.

5. Discussion and Conclusion

To develop a better execution plan, it is essential that
concurrency is exploited as early as possible even with
partial overlaps of the activities. This ensures that
intermediate time points are considered in the execution
plan during the concurrent product design. As such this
paper focuses on two important questions (a) When
does the activity require the information from its
upstream activities and (b) when will the required
information be available?

An information constraint-driven execution plan
semantics is proposed to relax the time restrictions on
the information constraints. This enables that a depen-
dent activity set be executed earlier in the process even if
partial information for the ‘‘information constraints’’
are available.

Generally, two basic situations occur in a concurrent
design process, which is the subject of this research:

1. Some information is released at the intermediate time
point in the execution plan and not at the end of an
activity;

2. Some information is required at the intermediate
time point in the execution plan and not at the
beginning of an activity.

For situation (1), one will argue that why the initial
breakdown of the design activities has not been based on
the availability of information at the end of that
activity. In reality, especially for supporting CE, this
situation is becoming common. For example, when
designing a part that is made up of several curve
pipes and other elements, when the diameter of one
of the pipes and the radius of its arc are determined,
but the design activity of the whole part is still in
the progress of design, the downstream DFM activity
for checking the manufacturing of the pipe can be
started to check whether the diameter and the radius
corresponds with the manufacturing specification. If the
selection of the diameter or radius is incorrect, the
designer can receive the modification suggestion from
the DFM activity immediately. Apparently, it is not
reasonable to break this design activity down into

several ones according to how many pipes it needs.
For situation (2), this is very common for large, long
term and complex activity, which requires different
information from several upstream activities in
different phase.

The proposed execution plan semantics can dramat-
ically shorten the design cycle time if the activity
duration and the time when the information required
and released are accurately estimated in the initial
project-planning phase. This time-driven execution
plan semantics is very suitable for complex workflow
processes and large set of long activities that cannot
be easily broken down into smaller pieces. The concept
of time and constraint driven execution plan semantics
can be extended to in scheduling workflow execution
in a WfMS.

References

1. Aversano, L., Canfora, G. and De Lucia, A. et al. (2001).
Business Process Reengineering and Workflow
Automation: A Technology Transfer Experience, Journal
of Systems and Software, Available on line on 24 Oct., 2001.

2. Bitzer, S.M. and Kamel, M.N. (1997). Workflow
Reengineering: A Methodology for Business Process
Reengineering Using Workflow Management Technology,
In: Proceeding of the 30th Hawaii International Conference
on System Sciences, pp. 415–426.

3. Chlebus, E., Cholewa, M. and Dudzik R., et al. (1998). CAx
Application for Process Oriented Concurrent Design,
Journal of Materials Processing Technology, 76(1–3):
176–181.

4. Eppinger, S.D. (2001). Innovation at the Speed of
Information, Harvard Business Review, 79(1): 149–158.

5. Geppert, A., Tombros, D. and Dittrich, K.R. (1998).
Defining the Semantics of Reactive Components in Event-
driven Workflow Execution with Event Histories,
Information Systems, 23(3–4): 235–252.

6. Gayretli, A. and Abdalla, H.S. (1999). An Object-
oriented Constraints-based System for Concurrent Product
Development, Robotics and Computer-Integrated Manufac-
turing, 15(2): 133–144.

7. Goh, A, Koh, Y.K. and Domazet, D.S. (2001). ECA Rule-
based Support for Workflows, Artificial Intelligence in
Engineering, 15(1): 37–46.

8. Huang, G.Q., Huang, J. and Mak, K.L. Agent-based
Workflow Management in Collaborative Product
Development on the Internet, Computer-Aided Design,
32(2000): 133–144.

9. Kuo, T.C., Huang, S. H. and Zhang, H.C. (2001). Design
for Manufacture and Design for ‘X’: Concepts,
Applications, and Perspectives, Computers & Industrial
Engineering, 41(3): 241–260.

10. Kovacs, Z., Le Goff, J.M. and McClatchey, R. (1998).
Support for Product Data from Design to Production,
Computer Integrated Manufacturing Systems, 11(4):
285–290.

11. Krishnan, V., Eppinger, S.D. and Whitney, D.E. (1997).
A Model-Based Framework to Overlap Product Develop-
ment Activities, Management Science, 43(4): 437–451.

Execution Plan for Maximizing Concurrency in Product Development 311

12. Prasad, B. (1999). Enabling Principles of Concurrency and
Simultaneity in Concurrent Engineering, Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing,
13(3): 185–204.

13. Prasad, B., Wang, F. and Deng, J. (1998). A Concurrent
Workflow Management Process for Integrated Product
Development, Journal of Engineering Design, 9(2): 121–135.

14. Shih, H.M. and Tseng, M.M. (1996). Workflow
Technology-based Monitoring and Control for Business
Process and Project Management, International Journal of
Project Management, 14(6): 373–378.

15. Spinner, M. (1989). Improving Project Management Skills
and Techniques, Englewood Cliffs, NJ: Prentice Hall.

16. Steward, D. (1981). System Analysis and Management:
Structure, Strategy andDesign, NewYork: Petrocelli Books.

17. Steward, D. (1991). Planning and Managing the Design of
Systems, In: Proceedings of Portland International
Conference on Management of Engineering and
Technology, Portland, Oregon, USA, 27–31 October.

18. Ulrich, K.T. and Eppinger, S.D. (1994). Product Design
and Development, New York: McGraw-Hill Inc.

19. Steward, Donald, V. (1981). The Design Structure System: A
Method to Managing the Design of Complex Systems, IEEE
Transactions on Engineering Management, 28(3): 71–74.

20. Prasad, B. (1996). Concurrent Engineering Fundamentals,
Volume I: Integrated Product and Process Organization,
Upper Saddle River, New Jersey: PTR Prentice Hall.

21. Prasad, B. (1997). Concurrent Engineering Fundamentals,
Volume II: Integrated Product Development, Upper Saddle
River, New Jersey: PTR Prentice Hall.

22. WfMC (Workflow Management Coalition) (1995). WfMC
Workflow Reference Model, WFMC-TC00-1003
(issue 1.1), 19 Jan, 1995.

23. WfMC (Workflow Management Coalition) (1999a).
Workflow Management Coalition Terminology &
Glossary, WFMC-TC-1011(Issue 3.0), Feb., 1999.

24. WfMC (Workflow Management Coalition) (1999b).
Interface 1: Process Definition Interchange Process
Model, WFMC-TC-1016-P (version 1.1, Official
Release), 29 Oct., 1999.

Dr. Brian Prasad

Brain Prasad is the Chief
Knowledge Officer at Spec2-
Market Solutions, in Tustin,
CA, author of several books,
and managing editor of the
most premier Int. J. of Con-
current Engineering: Research
& Applications. Prior to join-
ing Spec2Market, he was a
Visiting Professor at California
Institute of Technology (CAL-

Tech), Pasadena. He is a senior executive consultant
(UGS), and on the Board of Advisors to many large
fortune 500 companies including GM, GE and EDS. He
has secured and managed large funded research from
many (Government and Private) sources. He is a
syndicated columnist for publications including Value-

based Management, Business Process Management,
Journal of Manufacturing Systems, and Industrial
Knowledge Management, and taught at UCI and
California State University Fullerton, School of
Engineering. He holds many adjunct faculty positions
at Oakland University, Rochester; Wayne State Uni-
versity, Detroit; West Virginia University, Morgantown;
to list a few. During 2001, Dr. Prasad served as
the Director of the Engineering, Information Technology
and Sciences unit of the University of California
at Irvine Extension (UNEX), CA. Dr. Prasad holds
a PhD degree in Mechanical and Aerospace Engi-
neering from Illinois Institute of Technology, Illinois,
Chicago. He also graduated from the Stanford
University, School of Engineering with a Degree of
Engineering in Applied Mechanics (now a Division
of Mechanical Engineering), California. He received
a Master (MS) degree from Indian Institute
of Technology, Kanpur and a BE Degree from Bihar
College of Engineering, Patna, both from India.

Jinmin Hu

Jinmin Hu is a senior soft-
ware architect at Kingdee
Software Co. Ltd, one of the
biggest ERP vendors in China.
He is also a part-time resear-
cher at CIT Lab, Shanghai
Jiao Tong University, China.
He worked as a postdoctoral
researcher at University of
Twente, the Netherlands in
2001 and 2002. His research
interests are in workflow

management system, concurrent engineering and soft-
ware engineering. He received an MS in automatic
control from Hunan Univeristy and a PhD in computer
science from Shanghai Jiao Tong University. His email
address is hujinmin@ yahoo.com.cn

Jianxun Liu

Jianxun Liu is now an
associate professor in CS
d e p a r tm e n t o f H u n a n
University of Science and
Techno logy , Ch ina . He
received his MSc and Ph.D
degree in computer science
from Central South University
of Technology in 1997 and
S h a n g h a i J i a o T o n g
University in 2003 separately.

His current research interests include Electronic
Commerce, Workflow, Agent and XML.

312 J. HU ET AL.

